《比的应用》教学设计

时间:2024-06-17 15:28:17 教学资源 投诉 投稿

《比的应用》教学设计

  作为一名优秀的教育工作者,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么问题来了,教学设计应该怎么写?以下是小编精心整理的《比的应用》教学设计,欢迎阅读,希望大家能够喜欢。

《比的应用》教学设计

《比的应用》教学设计1

  教学目标

  1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。

  2。会联系加减法的含义解答有图有文字的一步计算应用题。

  3。培养初步的分析、判断和推理能力。

  教学重点

  有图有文字应用题的解答。

  教学难点

  解答有图有文字的减法应用题。

  教具学具准备

  教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。

  学生准备教科书第88页数学游戏的口算卡片和得数卡片。

  教学步骤

  一、铺垫孕伏。

  6+2=9+4=9+9=

  9+3=3+5=4+6=

  9+7=9+6=9+5=

  2+7=9+2=9+8=

  统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。

  二、探究新知。

  1、导入。

  (1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。

  师:图中先告诉我们什么?又告诉我们什么?

  引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。

  师:求一共是多少只该怎样算呢?

  引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。

  教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。

  (2)揭示课题。

  像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。

  2、教学例5左边的加法应用题。

  (1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?

  引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?

  教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。

  (2)求一共是多少只怎样计算呢?

  引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9

  (3)让学生把教科书第88页例5左题的算式补充完整。

  (4)反馈练习。

  完成“做一做”左边的加法题(小兔图)。

  先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。

  3、教学例5右边的减法应用题。

  (1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状。看图,你知道了什么?怎样计算?

  引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6

  (2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题。

  让学生自由读一读题,找出题中的两个已知条件和1个问题。

  引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的。问题是:还剩几个?也是用文字叙述的。

  师:求还剩几个应该怎样想,怎样列式呢?

  引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6

  (3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。

  (4)反馈练习。

  完成“做一做”右边的题(汽车图)。

  先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的'空。订正时提问:为什么用减法算?

  4、集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?

  引导学生汇报:

  相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。

  不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。

  5、看书,质疑。

  三、课堂小结。

  今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。

  四、随堂练习。

  1、练习十九第1题(图片:练习3)。

  先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。

  2、比比看哪组先夺得红旗(图片:练习4)。

  把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。

  3、游戏“你争我抢”【详见探究活动】。

  布置作业

  (投影片出示)

  让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。

  板书设计

  应用题

  教案点评:

  教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。

《比的应用》教学设计2

  设计说明

  1.注重培养学生学习的自主性。引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

  教学目标

  1、经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。

  2、在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积,求比例中的未知项,”会正确解比例。

  3、在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。

  教学重点:

  使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。

  教学难点:

  用比例的知识解决实际问题

  教法学法

  讲授法、讨论法、练习法、自主学习法

  教学准备:

  多媒体课件

  教学过程:

  一、回顾旧知,复习铺垫

  1.上节课我们学习了有关比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?

  2 .下面两个长方形的长和宽能组成比例吗?(白板出示长方形)

  二、创设情境 引出新知

  师讲《完璧归赵》的故事。秦王打算用什么来换和氏璧?其实这种物物交换的现象在我们现实生活中同样存在,学生举例,课前,老师就收到了这样一则信息,淘气是玩具汽车的收藏爱好者,笑笑喜欢收藏小人书,两人一商量,打算资源共享。引出新知——《比例的应用》

  三、实践探究、精讲点拨

  活动(一)“物物交换”,提出问题

  呈现问题情境,引导学生读懂题意,并尝试提出问题。

  他们经过商量,打算用4个玩具汽车换10本小人书, 14个玩具汽车,可以换多少本小人书?(设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  活动(二)尝试解决,体会联系

  1、14个玩具汽车可以换多少本小人书?把你的想法记录在答题卡上。

  2、 教师引导学生交流各自的想法,体会在“物物交换”的'过程中,玩具汽车的数量与小人书的数量之间存在的比例关系。

  3、学生介绍每种方法的思考过程,强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。

  活动(三) 拓展策略 列比例解答

  1、教师引导:假设14个玩具汽车可以换x本小人书,同学们能否根据题意列出比例?并说说你是根据哪两句话写出比例的,你是怎么想的?

  2、学生尝试列式。

  3、交流汇报写出比例的主要依据。

  4、学生独立解比例。

  5、汇报结果。

  6、验算:把求出的结果代入比例验算一下,看等式是否成立。 (学生自主验算)

  7、教师小结。解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

  四、分层练习、生生过关

  (1)完成练一练1、2题

  (2)完成练一练3、题

  五、拓展延伸、优化提升

  1、根据小组评价结果编一道有关比例的应用题。

  2、你能结合生活中的例子编一道有关比例的应用题吗?

《比的应用》教学设计3

  教学目标:

  1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。

  2、过程与方法:根据实际情况,独立完成学习任务。

  3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。

  教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。

  教具准备:多媒体课件、计算器。

  教学过程:

  一、复习铺垫。

  1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?

  (1)学生独立解答。

  (2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?

  2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)

  二、探索新知。

  1、学习例12(1)

  (1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?

  (2)学生读题理解题意,独立列式计算。

  (3)汇报:2.5÷0.4=6.25(个)

  (4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?

  (5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?

  (6)学生汇报讨论情况。

  (7)演示多媒体课件,验证结果。

  边演示课件,边提问:如果是用我们以前的“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?

  (8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。

  (9)在我们的日常生活中,有像这样的情况吗?请你说一说。

  2、填一填

  (1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?

  列式为:210÷40=5.25≈( )辆应用( )法取近似值。

  (2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?

  列式为:150÷40=3.75≈( )个应用( )法取近似值。

  3、学习例12(2)

  (1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

  (2)要求这个问题,要用什么方法列式?怎样列?

  (3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?

  ②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?

  (4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。

  (5)在我们的生活中,有像这样的情况吗?请你说一说。

  4、选一选

  (1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()

  A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)

  (2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()

  A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)

  5、学生看书本P33的内容,质疑。

  6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的.近似值。

  三、练习提高。

  1、P33“做一做”的题目。

  2、P35第7题。

  3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

  (4)对学生进行环保教育。

  四、全课总结。

  同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?

  五、布置作业。

  课本P35第6、8、9题。

《比的应用》教学设计4

  一、教材分析

  本节课是必修三第十三章《电磁感应与电磁波初步》第三节的内容,本节内容把电与磁彻底的联系在一起。从物理学的角度看,电磁感应在电磁学中的地位,正是由于电磁感受现象的发现,把人类社会带入了电气化时代,体现了“划时代的发现”。另外本课的实验部分是在于引导学生通过活动和思考来主动地获得知识。教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。

  二、学情分析

  学生对闭合电路的部分导线切割磁感线能产生电流,在初中已经有一定的认识,但在空间想象能力、问题本质的分析方面还较为薄弱。因此,在教学中国从学生的已有知识出发,通过学生自己的自主学习、探究实验、产生问题等学习方法,解决问题得出产生感应丁柳德条件的结论。

  三、基于核心素养的教学目标设计

  物理观念:知道感应电流的产生条件及相应实验方法;知道用感应电流的产生条件去判断回路中是否产生感应电流。

  科学思维:通过物理学史的学习,体会电磁相互转化的思想。

  科学探究:通过学生实验,进行实验观察、归纳分类,达到能够判断回路中磁通量如何变化和因为什么而变化的目的。

  科学态度与责任:领会科学家对自然现象、自然规律的探究,以科学不怕困难、勇于面对挫折的坚强意志激励自己。体会物理与生产生活的紧密联系。

  四、重、难点

  重点:通过实验观察和实验探究,理解感应电流的产生条件。

  难点:感应电流的产生条件。

  五、教学方法

  讲授法、探究实验法

  六、教学过程

  (一)新课引入

  (二)划时代的发现

  1.奥斯特:电生磁

  (动图展示奥斯特实验)

  奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的。

  电能生磁,根据对称性,为什么不能用磁来生电呢?

  法拉第他就坚信磁也能生电。

  2.法拉第:磁生电

  于是从1822年开始进行了将近十年的实验。直到1830年8月他发现给一个线圈通电和断电的瞬间,另一个线圈中出现了电流。

  于是,他又设计并动手做了几十个实验,发现了各种深藏不露的各种"磁生电"的现象。从实验现象中领悟到:“磁生电”是在一种变化、运动的过程中才能出现的效应。总结起来是这么五类:

  ①变化的电流

  ②变化的磁场

  ③运动的恒定电流

  ④运动的磁铁

  ⑤在磁场中运动的导体

  并且他把这些现象命名为电磁感应。在这种情况下产生的电流叫做感应电流。

  小结:

  法拉第的这一伟大发现完善了电与磁的内在联系,所以便有电磁学这一门学科的诞生。

  (三)产生感应电流的条件

  法拉第发现了电磁感应现象,那么具体产生感应电流的条件是什么呢?

  1、实验探究:感应电流产生的.条件

  导体切割磁感线,会在闭合回路中产生感应电流

  2、实验验证

  (1)ab静止的时候,电路中没有感应电流;

  (2)ab沿着磁感线运动的时候,电路中没有感应电流;

  (3)仅有ab切割磁感线的时候,才会产生感应电流。

  ·分析:ab切割磁感线时,磁场的大小和方向没有变化,变化的只有电路abcd的面积。

  那么,与磁场相关的哪个物理量发生了变化呢

  我们学过磁通量的的表达式是φ=BS,闭合电路abcd的面积发生了变化,也就是说,穿过电路abcd的磁通量发生了变化。

  那么,感应电流的产生是否与磁通量的变化有关呢

  下面我们通过实验来研究这个问题。

  3、实验探究1:

  磁铁插入、抽出

  实验操作:指针偏转情况

  磁铁插入——指针偏转

  磁铁静止在线圈中——指针静止

  磁铁拔出——指针偏转

  或停在线圈中时,电流表指针如何动作?

  如图,线圈A通过变阻器和开关连接到电源上,线圈B的两端连接到电流表上,把线圈A装在线圈B的里面。观察下面几种情况下线圈 B中是否有电流产生。通过动图依次观察实验。

  开关和变阻器的状态——指针偏转情况

  开关闭合瞬间——指针偏转

  开关断开瞬间——指针偏转

  开关闭合时,滑动变阻器不动——指针静止

  开关闭合时,迅速移动滑动变阻器的滑片——指针偏转

  4、归纳总结

  请你根据实验现象总结,什么情况下闭合导体回路中产生感应电流。

  (动图展示线圈A中的磁感线条数变化的过程)

  磁场强弱的变化我们可以通过磁感线的条数来观察,观察动图可以看到闭合开关穿过B的磁感线从无到有;滑动滑片,穿过B的磁感线的条数不断的变化;断开开关,穿过B的磁感线从有到无。这种情况下,根据公式φ=BS,B的面积没有改变,但是磁场感应强度B变化了,所以说穿过线圈 B的磁通量也发生了变化,线圈B中有感应电流。

  5、得出结论

  以上实验及其他事实表明∶

  当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。这就是产生感应电流的条件。

  (四)电磁感应现象的应用

  ·发电机

  1831年圣诞节前夕的一次科学报告会上,向大众展示了人类历史上最早的发电机——法拉第圆盘发电机,开辟了人类社会的电气化时代。

《比的应用》教学设计5

  知识目标: 1、知道离心运动及其产生的原因.

  2、知道离心现象的一些应用和可能带来的危害.

  能力目标: 1、培养学生应用理论知识解决实际问题的能力

  情感目标:1、培养学生用理论解释实际问题的能力与习惯.

  教材首先分析了离心现象发生的条件和离心运动的定义,接着从生产、生活的实际问题中说明离心运动的应用和危害,充分体现了学以致用的思想.

  学习离心运动的概念时,通过充分讨论,让学生明确几点:

  第一:做圆周运动的物体,一旦失去向心力或向心力不足,都不能再满足把物体约束在原来的圆周上运动的条件,这时会出现物体远离圆心而去的现象.

  第二:可补充加上提供的向心力F大于物体所需向心力时,(),表现为向心的趋势(离圆心越来越近)这对学生全面理解“外力必须等于时,物体才可做匀速圆周运动”有好处.

  第三:离心运动是物体具有惯性的表现,而不是物体受到“离心力”作用的结果.有些学生可能提出,“离心力”的问题,教师可以说明那是在另一参照系(非惯性系)中引入的概念,在中学阶段不予研究.

  关于离心运动的应用和防止,可引导同学讨论完成.

  教学设计方案离心现象及其应用

  教学重点:离心运动产生的条件

  教学主要设计:一、离心运动(一)讨论:在光滑水平面上,用细绳系一个小球,使其在桌面上做匀速圆周运动.若细绳突然断了,小球将如何运动?若拉绳的力变小了,小球如何运动?若拉绳的力变大了,小球如何运动?(二)展示“魔盘”娱乐设施的动画资料讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的`人能随之一块做圆周运动,而有的人逐渐向边缘滑去?(三)用提供的力与需要的向心力的关系角度解释上述现象,得到离心运动的条件和概念.(配合课件1)

  二、离心运动的应用和防止:可提出一些问题让学生讨论解决:如:(1)洗衣机的脱水筒中的衣物上的水滴,在脱水筒工作时,水滴需要的向心力由什么决定?提供的向心力由什么决定?什么情况下,水滴将被甩出?(2)在公路转弯处,为什么车辆行驶不允许超过规定的速度?(3)为什么砂轮、飞轮等都不得超过允许的最大转速?等等

  探究活动观察并思考: 1、汽车、自行车等在水平面上转弯时,为什么速度不能过大?2、滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况?

《比的应用》教学设计6

  教学具准备:

  1、一个邮寄过的信封。

  2、调查了解本地邮政编码、本校邮政编码、几个电话号码、几个车子牌号分别是什么?它们分别是怎样编排的?教学过程:

  一、谈话引入

  同学们,我们班有多少人?(50人)你自己的学号是多少?(28号、17号``````)老师点名时,如果不叫姓名,怎样来区分班上的同学呢?从而揭示课题:数不仅可以用来表示数量和顺序,还可以用来编码。

  二、新课学习

  1、同学们邮寄过信或收到过信吗?拿出已写好封面的信封,仔细观察,你发现什么?同桌互相说说。信封左上角那排数是什么?(邮政编码)

  2、指名介绍邮政编码的作用是什么?(邮政编码是我国的邮政代码。机器能根据邮政编码对信件进行分拣,这样就大大提高了信件传递的速度)

  3、你想知道这些邮政编码是怎样编排的吗?

  ①、师生共同学习书P113的邮编448268是怎样编排的`?

  邮政编码由六位数字组成:

  前两位数字表示省(直辖市、自治区);

  前三位数字表示邮区;

  前四位数字表示县(市);

  最后两位数字表示投递局(所)。

  ②生介绍自己了解到的本地邮政编码是怎样编排的?我们学校的邮政编码是多少?它们是怎样组成的?

  三、巩固练习

  1、你还知道哪些邮政编码?它们是怎样组成的?和同学交流一下。

  我们收集了这么多邮政编码,你们发现它们有什么相同的地方?机器怎么能根据邮政编码的数字进行分拣呢?让学生通过观察、比较找出同一个省、市的邮政编码前面有几位是相同的。

  2、生活中的编码很多,你还知道哪些?(电话号码、车子牌号……)

  3、谁来介绍一下自己家的电话号码是多少?它们是怎样编排的?

  四、全课小结

  同学们,通过今天的学习你知道了什么?收获有哪些?还有什么不明白?

  五、作业:书P118第1、2题。

  教学内容:人教版课标实验教科书P111~P113以及相应的练习。

  教学目标:

  1、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用。

  2、通过观察、比较、猜测来探索数字编码的简单方法。

  3、让学生学会运用数进行编码,初步培养学生的抽象、概括能力。

  4、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

  教学重难点:通过观察、比较、猜测来探索数字编码的简单方法。

《比的应用》教学设计7

  教材分析:

  《用数学——简单的乘法应用题》的是人教版二年级上册第四单元的内容。本课是在学生学习乘法的初步认识和1—5的乘法口诀的基础上来学习的。让学生根据乘法意义和所学的乘法口诀解决生活中简单的求几个相同加数的和实际问题。培养学生的思维能力、语言表达能力和合作精神。让学生在思考中,在师生交流中,明白题中的数量关系,明白为什么用乘法计算。

  教学目标:

  1、学会用乘法解决生活中的简单实际问题。

  2、进一步提高学生收集数学信息,发现数学问题的能力。

  3、通过解决问题,树立学生的自信心,增强对数学学习的兴趣。

  教学重点:

  依据教材特点,以及本班学生的实际情况,并结合我校数学科得培养学生能力这一教研主题,我确立了本节课的教学重点是使学生通过学习,学会用乘法解决数学问题的,提高解题能力。教学难点是把自己的解题思路讲诉清楚明白。

  教学学情:

  《课程标准》中指出:无论从数学的产生还是从数学的发展来看,数学与现实生活都有着密不可分的联系。通过以前的学习经验,学生可以在教材或老师为他们提供的.适合他们的年龄特点的童话情境中、生活实际中学会从数学角度去观察事物、思考问题,从而学生学习数学的兴趣得到激发,达到学好数学的愿望。

  教法学法:

  在本课的教学中我主要引导学生仔细观察,善于表达,自己动脑的学习方式来教会他们学习《课程标准》倡导“教师要向学生提供充分从事数学活动的机会,帮助他们在自主探究合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,获得的数学活动经验。”

  教学过程:

  本课的教学,我按照:“复习旧知,知识迁移;创设情景,寻找方法;拓展延伸,发展能力”三个环节进行的。

  一、复习旧知知识迁移。

  这一环节我首先让学生完成建房子的口算练习每一块砖上有一道乘法算式,使学生明白要想把房子建的又结实又漂亮,就得算对得数还要说出用的那一句。其次进行了看图写算式的练习在汇报过程中对乘法的意义起到巩固复习的作用。(学生很认真的去完成每一道口算题,在汇报中口语表达能力得到了提高。)

  二、创设情景,寻找方法。

  在这一环节中,我根据学生的年龄特点,创设森林里的小动物为了度过寒冷的冬天正准备盖房子,请来小象帮他们运送木头这一情景,引导学生看图找数学信息提出问题,说明白自己思考的过程,再列式计算,最后组织学生小组讨论这几种算法那一种比较简便,从而找到更便捷的方式来解决问题。再通过“小猴摘桃”,“小兔采蘑菇”以及“河边休息”一系列图文应用题的完成,进一步掌握方法。

  这一过程问题之间有连续性,而且就有童话意境,整个教学过程中,学生是活动的主体,自己获得信息,提出问题并解决问题,教师在活动中起指导作用,并且这个指导处是在关键处、难点处、学困处。这个过程学生学习兴趣盎然,解决问题效果好。

  三、拓展延伸,发展能力。

  其实我们所学习的数学知识不但可以帮助小动物解决一些数学问题,在我们的现实生活中也运用的,出示图文应用题放手让学生去解决,并依据相关的数学信息提出问题,解决问题。学生的思维得到扩展,能力得到提高。

  四、教学效果

  本节课创设童话情景,让学生兴趣盎然的投入学习中来,揭开数学的神秘面纱,创造了与学生生活环境、知识背景密切相关的。在探究过程中,学生运用所学知识来解决生活中的实际问题,并且敢于探索,敢于创新。在实际的教学活动中,学生能在情境中提出问题,解决问题。并能把自己的想法清楚完整的表述出来。无论是收集数学信息,发现数学问题的能力,还是树立学生的自信心,增强对数学学习的兴趣,都得以提高。但是自己也有许多地方处理的还不够妥当,尤其要注意每个环节要做到扎实有效,不光是要传授知识,更主要的是知识的落实,尤其要注意细节的处理,这些都是我今后要注意的。

  通过这节课的教学,让我意识到自己和优秀教师之间存在着不足,所以在以后的教学中,我会更加努力,多观察,多学习,遇到问题多请教,多研讨,把课堂当做锻炼自己的一个平台,争取在以后的教学中再上一个新的台阶。

《比的应用》教学设计8

  不同分散系分散质粒子的大小不同,胶体微粒分散质的直径(1—100nm)在溶液(100nm)之间,利用丁达尔效应可区分溶液和胶体。

  胶体之所以能够稳定存在,其主要原因是同种胶体粒子带同种电荷,胶粒相互排斥,胶粒间无法聚集成大颗粒沉淀从分散剂中析出。次要原因是胶粒小质量轻,不停地作布朗运动,能克服重力引起的沉降作用。

  一般来说,金属氢氧化物、金属氧化物的胶体粒子带正电荷,如Fe(OH)3胶体、Al(OH)3胶体、AgX胶体(AgNO3过量)等;非金属氧化物、金属硫化物的胶体粒子带负电荷,如硅酸胶体、土壤胶体、As2S3胶体等。胶体粒子可以带电荷,但整个胶体一定呈电中性。胶粒是否带电荷,这取决于胶粒本身的性质,如可溶性淀粉溶于热水制成胶体,具有胶体的性质,但胶体中的分散质为高分子化合物的单个分子,不带有电荷,因而也无电泳现象。

  胶体聚沉的方法有:①加电解质溶液;②加与胶粒带相反电荷的另一种胶体;③长时间加热等。

  胶体有广泛的应用:可以改进材料的机械性能或光学性能,如有色玻璃;在医学上可以诊疗疾病,如血液透析;农业上用作土壤的保肥;在日常生活中的明矾净水、制豆腐;还可以解释一些自然现象如:江河入海口易形成三角洲等。

  胶体的聚沉与蛋白质的盐析:胶体的聚沉是指胶体在适当的条件下,(破坏胶体稳定的因素)聚集成较大颗粒而沉降下来,它是憎液胶体的性质,即胶体的凝聚是不可逆的。盐析是指高分子溶液(即亲液胶体)中加入浓的无机轻金属盐使高分子从溶液中析出的过程,它是高分子溶液或普通溶液的性质,盐析是因为加入较多量的盐会破坏溶解在水里的高分子周围的水膜,减弱高分子与分散剂间的相互作用,使高分子溶解度减小而析出。发生盐析的分散质都是易容的,所以盐析是可逆的。由此可见胶体的聚沉与蛋白质的盐析有着本质的区别。

  二、例题分析

  【例题1】已知有三种溶液:FeCl3的溶液、Na2SiO3溶液、盐酸,现有下列说法:①将FeCl3滴入冷水中,边滴边振荡,便可得FeCl3胶体;②在稀盐酸中滴加硅酸钠可制的胶体,胶体粒子直径大小在1~100nm之间;③用光照射硅酸胶体时,胶体粒子会使光发生散射;④FeCl3溶液和Fe(OH)3胶体都能透过滤纸;⑤胶体、溶液和浊液属于不同的分散系,其中胶体最稳定;⑥常温下,pH=2的FeCl3的溶液和pH=2的盐酸中由水电离出的氢离子浓度之比为1010:1,其中正确的`是

  A.①④⑥B.②③⑤C.②③④⑥D.①②③④⑤⑥

  解析:制备Fe(OH)3胶体是将FeCl3的浓溶液(或饱和FeCl3溶液)滴入沸水中,①错误;胶体粒子直径大小介于1~100nm之间,②正确;丁达尔效应是胶体具有的性质之一,是由于胶体粒子使光发生散射形成的,是鉴别溶液和胶体的一种常用物理方法,③正确;溶液和胶体都能透过滤纸,④正确;溶液是最稳定的分散系,⑤错误;强酸弱碱盐溶液中水电离出的氢离子的浓度等于溶液中氢离子的浓度,酸溶液中水电离出的氢离子浓度等于溶液中的氢氧根离子的浓度,分别为10-2、10-12;⑥正确。

  答案:C

  点拨:胶体考查的重点是与常见分散系的比较与判断,以及胶体的概念、制备和性质,常将胶体的基础知识与科技、生活、生产相结合进行命题。胶体在高考题中并不常见,有时会出现在选择题的某个选项中。复习时注意识记胶体的概念、性质,注意与其它分散系的联系与区别。

  【例题2】下列关于溶液和胶体的叙述,正确的是

  A.溶液是电中性的,胶体是带电的

  B.通电时,溶液中的溶质粒子分别向两极移动,胶体中的分散质粒子向某一极移动

  C.溶液中溶质粒子的运动有规律,胶体中分散质粒子的运动无规律,即布朗运动

  D.一束光线分别通过溶液和胶体时,后者会出现明显的光带,前者则没有

  解析:胶体本身是不带电,只是其表面积较大,吸附了溶液中的离子而带了电荷,故A项错;溶液中的溶质,要看能否电离,若是非电解质,则不导电,也即不会移动,B项错;溶液中溶质粒子没有规律,C项错;丁达尔效应可以用来区分溶液和胶体,D项正确。

  答案:D

  【例题3】下列实验操作或叙述正确的是

  A.不能用丁达尔现象区别FeCl3溶液和Fe(OH)3胶体

  B.欲制备Fe(OH)3胶体,将饱和FeCl3溶液加热煮沸

  C.利用渗析法可以分离除去淀粉溶液中的Na+和Cl-

  D.称取10gCuSO4·5H2O晶体溶解在40g水中既得质量分数为20%的CuSO4溶液

  解析:胶体具有丁达尔效应,而溶液不具有,即可用丁达尔效应区分胶体和溶液;制备Fe(OH)3胶体,应将FeCl3的饱和溶液逐滴加入沸水中并加热煮沸而得到;胶体微粒不能通过半透膜,而小分子和离子可以通过半透膜,即利用渗析法可以分离提纯胶体;D项溶液中溶质的质量分数为:×100%=12.8%

  答案:C

  点拨:正确把握胶体、溶液等分散系的概念以及其性质是解决该题的关键。如胶体和溶液都是均匀稳定的混合物;溶液能通过半透膜,胶体粒子可以通过滤纸,而不能通过半透膜,浊液不能通过滤纸和半透膜;胶体具有丁达尔效应,而溶液不具有;分离提纯胶体可以利用渗析法等。

  【例题4】“纳米材料”(1nm=10-9m)是当今材料科学研究的前沿,其研究领域及成果广泛应用于催化及军事科学中。“纳米材料”是指研究开发直径为几纳米至几十纳米的材料,如将“纳米材料”分散到液体分散剂中,对所得分散系的叙述正确的是

  ①一定是溶液②能全部通过半透膜③有丁达尔现象④可以全部通过滤纸

  A.①②B.②③C.①④D.③④

  解析:根据题给信息,“纳米材料”指的是直径为几纳米至几十纳米的材料,故“纳米材料”分散到液体分散剂中,所得的分散系是胶体,应具有胶体的性质,如丁达尔效应,粒子可以通过滤纸,但不能通过半透膜等。

  答案:D

  点拨:解答该题关键是理解题给信息,获得相关知识,并迁移到胶体的相关性质来分析作答。掌握了胶体的性质就能顺利解决该题。

  【例题5】已知土壤胶体粒子带负电,在土壤中施加含氮质量相同的下列化肥,肥效最差的是

  A.(NH4)2SO4B.NH4HCO3C.NH4NO3D.NH4Cl

  解析:土壤胶体粒子带负电,所以容易吸附阳离子,如果氮元素全部在阳离子中肥效就不会丢失。硝酸铵中有一部分氮元素在阴离子硝酸根中,而其它三个答案的氮元素全都在阳离子铵根中,故C答案肥效最差。

  答案:C

  点拨:本题考查里胶体具有介稳性的原因及其应用。只有对其原理理解透彻,才能作出正确选择。胶体粒子可以通过吸附而带电荷,因此胶粒可以吸附异性电荷。

  【例题6】某种胶体在电泳时,它的粒子向阴极移动。在这胶体中分别加入下列物质:①蔗糖溶液②硫酸镁溶液③硅酸胶体④氢氧化铁胶体,不会发生凝聚的是

  A.①③B.①④C.②③D.③④

  解析:该胶体在电泳时,它的粒子向阴极移动,说明它带正电荷,蔗糖属于非电解质,硫酸镁属于电解质,硅酸胶体粒子带负电荷,氢氧化铁胶体粒子带正电荷。

  答案:B

  【例题7】在Fe(OH)3溶胶溶液中,逐滴加入HI稀溶液,会出现一系列变化。

  (1)先出现红褐色沉淀,原因是___________________________________________

  (2)随后沉淀溶解,溶液呈黄色,写出此反应的离子方程式___________________

  (3)最后溶液颜色加深,原因是___________________________________________

  写出此反应的离子方程式_____________________________________________

  (4)用稀盐酸代替HI稀溶液,能出现上述哪些相同的变化现象_______(写序号)

  解析:HI既有酸性又有强还原性,I-能使Fe(OH)3胶粒聚沉,H+能使其溶解,生成Fe3+又能氧化I-成I2;而稀盐酸中的Cl—不能还原Fe3+,只能使其先聚沉后再溶解,导致现象不同。解答此题时不要仅把HI当作“电解质”,也不要仅把HI当作酸,更不能忽略I-的还原性。特别是在非填空型问答题中,由于没有像本题一样分层次设问,而是仅问:会发生哪些变化?为什么?这样极易以偏概全。

  答案:(1)HI是电解质,电解质能使胶体聚沉。

  (2)Fe(OH)3+3H+==Fe3++3H2O

  (3)有I2生成,2Fe3++2I-==2Fe2++I2

  (4)(1)(2)。

  【练习1】下列叙述正确的是

  A.直径介于1nm~100nm之间的微粒称为胶体B.电泳现象可证明胶体属电解质溶液

  C.利用丁达尔效应可以区别溶液与胶体D.胶体粒子很小,可以透过半透膜

  解析:胶体是指分散质粒子直径在1nm~100nm之间的分散系;部分胶体粒子带有电荷,能在外加电场下发生定向移动,即电泳,而有的胶体的胶粒因为不带电所以不发生电泳;丁达尔现象是胶体的重要特征,可用来区别溶液和胶体;胶体粒子可以透过滤纸,但不能透过半透膜。

  答案:C

  【练习2】将某溶液逐滴加入Fe(OH)3溶胶内,开始时产生沉淀,继续滴加时沉淀溶解,该溶液是

  A.2mol·L-1H2SO4溶液B.2mol·L-1NaOH溶液C.2mol·L-1MgSO4溶液D.硅酸溶胶

  解析:H2SO4、NaOH、MgSO4均属电解质,都能使Fe(OH)3溶胶产生沉淀,硅酸溶胶带负电荷能使其聚沉,但2mol·L-1H2SO4溶液还能和Fe(OH)3发生中和反应。

《比的应用》教学设计9

  教学目标:

  1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.

  2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.

  3.培养学生分析推理能力和逆向思维能力.

  4.渗透事物间联系的思想和比较的思想.

  教学重点:分析理解数量关系.

  教学难点:利用线段图理解数量关系,确定计算步骤.

  教学步骤:

  一、铺垫孕伏

  出示复习题:一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?

  要求学生:画线段图,并用两种方法解答.

  二、探究新知

  出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?

  对比复习题组织讨论:例题与复习题相比较,有什么特点?

  讨论结果:例题与复习题的'问题与已知条件换了位

  根据学生汇报的讨论结果,让学生在已画成的两个线段图中标注一下,已知什么,求什么?

  (通过线段图,从直观到抽象,使学生感知算理.)

  4.指导学生对照线段图讨论:要想求出每台每小时织布多少米,我们怎样做?

  5.根据学生汇报的讨论情况,让学生在线段图中标注出先要求的是图中的哪一段,应该怎样求?学生说清解答步骤后,教师板书每一步的小标题.然后再要求学生在练习本上直接试做,分步解答.同桌间互相讨论订正.

  6.指名学生口述分步解答过程,教师板书:

  (1)每台织布机8小时织布多少米?

  160÷5=32(米)

  (2)每台织布机每小时织布多少米?

  32÷8=4(米)

  引导学生列综合算式解答,先自己直接列式,再指名在线段留下对应位置板演成板书:

  160÷5÷8

  =32÷8

  =4(米)

  答:平均每台织布机每小时织布4米.

  (引导学生讨论、思考、试算,感知计算方法.)

  7.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?

  8.学生讨论确定先求“5台1小时织布多少米”,再求“1台1小时织布多少米”,教师根据学生汇报书写小标题.

  然后自己在书上第10页填空,由一名学生板演,形成以下板书:

  (1)5台织布机1小时织布多少米?

  161÷8=20(米)

  (2)每台织布机每小时织布多少米?

  20÷5=4(米)

  列综合算式解答为

  160÷8÷5

  =20÷5

  =4(米)

  答:平均每台织布机每小时织布4米.

  9.集体订正,订正时进一步强调每一步求的是什么?

  10.讨论:比较一下,两种解法有什么相同点和不同点?

  11.反馈练习:(投影出示)第10页“做一做”.

  读题,思考:找出已知条件和所求问题,要想求“1只母鸡1个月下多少蛋”这个问题,可以先求出什么?

  (三)巩固发展

  根据题中提供的条件进行分组练习,练习题目由各组任选一组.

  条件:“书法小组每人每天写8个大字,5个人4天共写了160个大字.”

  第三组题目:

  连线题,把意义相同的算式用线连接起来.

  8×4160÷4

  8×5160÷5

  8×5×416÷5÷4

  (注意:此题并非一一对应关系.)

  (四)课堂小结

  通过小结,进一步把连乘应用题与连除应用题进行比较区分,指明课题(板书课题:连除应用题),并对两种解题方法再进行理解区分.

  (五)布置作业(略)

  板书设计

《比的应用》教学设计10

  教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

  2、使学生能利用正反比例的意义正确解答应用题。

  培养学生的判断分析推理能力。

  教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

  教学过程:

  (一)复习

  1.说说正、反比例的意义。

  2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从A地到B地,行驶的速度和时间。

  (3)每块砖的面积一定,砖的块数和总面积。

  (4)海水的出盐率一定,晒出的盐和海水重量。

  3.判断下列各题中已知条件的.两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

  (1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

  (2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

  (二)新课

  例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  (1)用以前方法解答。

  (2)研究用比例的方法解答

  题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

  能不能利用这个关系式列比例解答?

  解比例,同学自已完成,及时纠正。检验。

  改变例1中的条件和问题

  甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

  教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

  1、以前的发法解答。

  2、怎样用比例知识解答?

  3讨论结果填书上。

  4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

  整理和复习

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、培养学生的思维能力。

  教学过程:

  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

  甲乙两数的比是5:3。乙数是60,甲数是()。

  2、解比例

  5/x=10/340/24=5/x

  3、完成26页2、3题

  综合练习

  1、A×1/6=B×1/5A:B=():()

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例():()、():()

  实践与应用

  1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

《比的应用》教学设计11

  教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。

  教学目标:

  1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

  2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

  3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

  教学重点:掌握计算组合图形面积的方法,并能准确计算。

  教学难点:对组合图形进行分析。

  教学准备:课件、学具、作业纸。

  教学过程:

  一、创设情景,谈话引入

  1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

  2.课件展示:鸟巢和水立方等建筑,精美的雕窗。

  【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。

  二、探究新知,解决问题

  1.实践操作(课件出示教材例3中的雕窗插图)

  师:谁能说说这两种设计有什么联系和区别?

  预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

  师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

  预设2:都是由圆和正方形这两个图形组成的。

  师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?

  学生操作,作品展示。

  【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。

  2.解决问题

  (1)阅读与理解

  师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。

  预设1:正方形的`面积减去圆的面积;圆的面积减去正方形的面积。

  预设2:需要知道正方形的边长和圆的半径。

  师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?

  学生思考,尝试练习。

  (2)分析与解答

  师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?

  预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。

  师:你是怎么知道正方形的边长的?

  根据学生回答课件展示:正方形的边长=圆的直径。

  师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?

  预设1:可以把右图中的正方形看成两个三角形。

  追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)

  结合学生回答课件展示。

  预设2:也可以看成四个三角形。

  师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)

  师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)

  【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。

  三、回顾反思,理解算法

  师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。

  左图:。

  师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?

  学生练习,反馈讲评。

  右图:。

  师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么发现?

  预设:和之前计算的结果完全一致。

  【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。

  四、课堂练习,强化认识

  1.基础练习

  (1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?

  师:求不能喷灌到的草坪面积,就是求什么?

  (2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?

  师:可以用怎样的方法验证结果是否正确?

  2.拓展练习

  在每个正方形中分别作一个最大的圆,并完成下表。

  采用四人小组合作的方式完成,小组汇报展示。

  师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?

  正方形面积为,圆的面积为,面积之比为。

  师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。

  【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。

  五、全课总结,畅谈收获

  通过本节课的学习,你有什么收获?谁来说一说。

《比的应用》教学设计12

  教学目标:

  1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。

  2、掌握根据比例尺求图上的距离或实际距离的方法。

  3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。

  教学重点:

  根据比例尺的意义求图上距离或实际距离

  教学难点:

  设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。

  教学过程:

  一、创设情境,揭示课题

  1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)

  2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的'运用(板书课题:比例尺的应用)

  二、自主探索

  1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)

  2、出示下面地图,思考从图上你能获得哪些信息。

  3、学生汇报:从图上可以看到想去的地方的方位,比例尺是多少,可以看出居住地及旅游的线路

  4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。

  (1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)

  (2)学生试做,并指名板演。

  (3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)

  5、学习求图上距离的方法

  (1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?

  (2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)

  (3)学生试做并板演。

  (4)集体订正,说一说,每种方法的思路及注意点。

  6、学生看书3738页,提出不懂的问题,集体解决。

  三、反馈提高

  1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?

  (1)1:1000

  (2)1:20xx

  (3)1:5000

  (4)1:10000

  选第(3)个最合适,让学生说明原因

  2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

  3、根据条件绘制金山镇镇区平面图

  (1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)

  (2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)

  四、小结:今天你学习了什么内容?有哪些收获?

  五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

《比的应用》教学设计13

  一、本单元的基础知识

  本单元是学生在已经学习了百分数的相关问题,初步理解了百分数的含义,会解决简单的百分数的问题,掌握了一些解决百分数的基本技巧的基础上进行教学的。

  二、本单元的教学内容

  P87~99本单元教材内容包括百分数的应用,进一步运用方程解决有关百分数问题。

  三、本单元的教学目标

  1.在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2.能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力。

  四、本单元重难点

  1.教学重点:能运用所学知识解决有关百分数的实际问题。

  2.教学难点:运用方程解决简单的百分数问题。

  五、学情分析:

  本单元的内容是在学生已经正确理解了百分数的意义,了解百分数、分数、小数的互化方法的基础上进行学习的,而且在分数混合运算的学习过程中学生对“谁比谁多(少)”也有了一定的了解,知道如何用画图的.方法体现出“谁比谁多(少)”的数量关系。而对于解答方法上学生也有类似的运用方程解决问题的经验,这些都会为他们学习本单元的知识扫清障碍。第一课时百分数的应用(一)

  首案编写者:李xx

  【教学内容】

  北师大版小学数学第十一册第七单元P87-89内容

  【教学目标】

  知识与技能:在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力。

  过程与方法:在合作探究过程中,体会百分数与现实生活的密切联系。

  情感与态度:在学习中养成独立思考,敢于质疑的精神,体验成功的乐趣。

  【教学重点】理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

  【教学难点】分数问题和百分数问题的内在联系

  【学情分析】五年级下册已学习了简单的百分数知识,本单元进一步学习百分数的应用。

  【教学策略】通过画线段图来分析数量关系解决问题。

  【养成教育】培养学生认真观察、自主学习、合作交流的好习惯。

  【教具准备】多媒体课件。

  教学过程:

  一、准备

  线段图是把握数量关系的重要方法之一

  你能用线段图表示下面的数量关系吗?

  在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%

  1.学生独立完成线段图

  2.展示学生成果

  3.教师对学生的作品进行评价

  二、百分数的应用

  1.出示教科书P23上面的问题

  2.思考:“冰的体积比原来水的体积增加了百分之几”是什么意思?

  学生自由发表自己的见解

  教师评价

  冰的体积比原来水的体积增加的是原来水体积的百分之几。

  3.学生独立解答问题

  4.班内交流

  方法一:

  (50—45)÷45

  =5÷45

  ≈11%

  方法二:

  50÷45

  ≈111%

  111%-100%=11%

  学生在叙述“谁比谁增加百分之几”的意义时,比较困难,绕口,可以通过画图帮助理解。同时要引导学生去理解谁比谁多百分之几的实际意义。

  三、试一试

  出示教科书P23下面的问题

  1.学生画图分析后独立完成

  2.课堂交流

  四、练一练

  1.教科书P24练一练第1题

  光明村今年每百户拥有彩电121台,比去年增加66台,去年每百户拥有彩电多少台?今年比去年增长了百分之几?

  2.科书P24练一练第2题

  3.教科书P24练一练第3题

  五、课堂总结

  通过今天的学习你有什么收获?

  板书设计

《比的应用》教学设计14

  教学时间:

  教学内容:第114页例8例9第115页做一做中的题目和练习二十六的第1、2题。

  教学目标:

  知识:使学生了解乘法应用题的'结构,学会根据乘法的意义列式解答。

  能力:培养学生分析乘法应用题的能力。

  教学重难点:学会根据乘法的意义列式解答。

  突破方法:讲解法、练习法

  教具:小黑板、投影机、多媒体

  教学过程

  一、前提测评

  1、看卡片,说得数

  2、看题列乘法算式

  (1)4个2相加多少?(2)5个3相加是多少?

  二、新授

  1、出示例8

  题目讲了一件什么事情?

  2、第一个已知条件是什么?第二个已知条件是什么?4×3=12(棵)

  3、小结:求3个4,所以用乘法。

  4、揭示课题

  5、教学例9

  (多媒体)出示例9

  ①第一个已知条件是什么?

  ②第二个已知条件是什么?

  ③出示问题

  三、达标测评

  练习二十六第1、2题

  四、板书设计

  教后经验与失误分析:

《比的应用》教学设计15

  本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

  一、教学目标

  1、综合运用平行四边形的五种判定方法和性质解决实际问题;

  2、进一步理解平行四边形的性质与判定的区别与联系;

  3、通过练习提高学生的逻辑思维能力以及分析问题的能力。

  二、教学重难点

  重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

  难点:在应用中明晰性质与判定的区别与联系。

  三、教学方法

  通过简单,典型,针对性质和判定的应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的.过程。

  四、教学反思

  题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

【《比的应用》教学设计】相关文章:

《比的应用》教学设计02-07

比应用教学设计05-08

比的应用教学设计06-19

比例的应用教学设计01-02

《比的应用》教学设计最新09-10

比的应用优秀教学设计06-12

《比的应用》教学设计范文09-16

《浮力的应用》教学设计07-07

比应用教学设计(推荐)10-04

《比例的应用》教学设计04-03