(合集)《圆柱的表面积》教学设计15篇
作为一无名无私奉献的教育工作者,常常需要准备教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的《圆柱的表面积》教学设计,仅供参考,希望能够帮助到大家。
《圆柱的表面积》教学设计1
【教学内容】:
p13-14页例3-例4,完成“做一做”及练习二的部分习题。
【教学目标】:
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
【教学重点】:
理解求表面积、侧面积的计算方法,并能正确进行计算。
【教学难点】:
能灵活运用表面积、侧面积的有关知识解决实际问题。
【教学过程】:
一、以旧引新
1.圆柱体有()个面,分别是()、()、()。
2.圆柱体上底和下底之间的距离,叫做(),有()条。
3.长方形面积=()×()
圆的周长=()c=()
圆的面积=()s=()
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①帽子的'侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习七第6题。
【板书】:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①帽子的侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
答:需要用20xx平方厘米的面料。
《圆柱的表面积》教学设计2
教学目标:
圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。
教学重点:
掌握表面积的计算方法
教学难点:
运用所学的知识解决简单的实际问题
教具准备:
圆柱的展开图
教学过程:
一、复习
1、指名学生说出圆柱的特征。
2、圆柱的侧面积=底面周长高
3、计算下面各圆柱的侧面积。
(1)底面2.5周长米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
4、提问:圆柱的侧面积加两个底面的面积就圆柱的'什么?(表面积)
二、教学表面积。
那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积
1、教学例2。
出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?
(1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?
(2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。现在我们把这个圆柱展开。出示展开图,如下:
2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)
3、出示试一试:要做一个没有盖的。圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
(1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?
(2)要计算做这个水桶需要多少铁皮,应该分哪几步?
教师行间巡视,注意察看最后的得数是否计算正确。
(3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
三、课堂小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习。
练一练第1~4题。
《圆柱的表面积》教学设计3
教学内容:
北师大版六年级数学下册圆柱的表面积。
教学目的:
1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。
2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。
3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。
4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。
教学准备:
教师准备:长方体模型、多媒体课件。
学生准备:圆柱形纸盒、剪刀。
教学过程:
一、创设情境,导入新课。教师出示长方体模型。
提问:(1)长方体的表面积指什么?(六个面的面积之和)(2)如何计算长方体的表面积?(把六个面的面积加在一起)
多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)
如何计算圆柱的表面积?(把三个面的面积加在一起)
教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需
把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)
(由长方体的表面积导入圆柱的表面积,知识的'迁移自然,学生容易理解圆柱的表面积)
二、自主探究,合作学习
教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)
教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)
教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、平行四边形······)
教师:你能想办法验证一下你的猜想吗?
(一)圆柱的侧面展开
1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。
②圆柱的侧面展开后是平行四边形,我斜着把圆柱的侧面剪开得到一个平行四边形。
③圆柱的侧面展开后是长方形,因为我用一张长方形的纸卷成了一个圆柱。
④圆柱的侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。
(动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)(二)圆柱侧面展开图与圆柱的关系
1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。
①圆柱的底面周长
②圆柱的高
(三)圆柱的侧面积计算公式的推导
1、教师:你能根据长方形或平行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生汇报展示,教师板书演示。
圆柱的底面周长
长方形的面积=长×宽
圆柱的侧面积=底面周长×高
平行四边形的面积=底×高
圆柱的底面周长
圆柱的侧面积=底面周长×高
教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)
S侧=Ch
汇报交流,质疑问难,计算表面积。
1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
30
教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)
S侧=Ch=2×3、14×10×30=1884(平方厘米)
2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(平方厘米)底面积:3.14×102=314(平方厘米)表面积:1884+314×2=2512(平方厘米)3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。
教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?
《圆柱的表面积》教学设计4
教案背景:
冀教20xx课标版小学数学六年级下册第四单元
教学课题:
圆柱的侧面积。
教材分析:
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。
2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。
3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。
教学重点:圆柱侧面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的.计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。
学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:圆柱体教具、多媒体课件。
学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:
一、复习导入,引入新知
1、复习圆柱体的特征
师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)
二、课堂小结
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。
三、课后作业
应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计
圆柱的侧面积 =底面周长 ×高→S侧=ch
长方形面积=长×宽
教学反思
这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:
一、数学教学要注重数学思想和数学方法的渗透。
在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。
二、重视学生的合作意识和实践能力的培养。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。
三、合理利用现代化教学手段辅助教学。
侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。
《圆柱的表面积》教学设计5
教学目标:
1、理解圆柱侧面积和圆柱表面积的含义。
2、掌握圆柱侧面积和表面积的计算方法。
3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。
教学重点:
掌握圆柱侧面积和表面积的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学准备:
多媒体课件
教学过程:
一、创设情景
1、复习圆柱的特征。
2、大屏幕出示问题,学生口头回答:
(1)一个圆形花池,直径是5米,周长是多少?面积是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽
二、探究新知
1、教学圆柱的侧面积。
(1)大屏幕出示课题:圆柱的表面积。
(2)理解“圆柱的`侧面积”的含义。用手指出实物圆住的侧面积。
(3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高
2、小结。
要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?
3、理解圆柱表面积的含义。
观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积
4、教学例4。
(1)大屏幕出示例4的题目。
思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么? (2)学生试着解答。
(3)全班交流:为什么只求了一个底面面积呢? (4)小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
5、巩固练习:完成第14页的“做一做”。
三、课堂小结
圆柱的表面积指的是哪几个面?如何求圆柱的表面积?
四、作业
完成练习二的5——7题。
五、思维训练
1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。
2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。
《圆柱的表面积》教学设计6
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的'长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学设计7
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。
(二)核心能力
运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。
(三)学习目标
1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。
2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。
3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。
(四)学习重点
圆柱表面积的计算
(五)学习难点
圆柱体侧面积计算方法的推导
(六)配套资源
实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具
二、学习设计
(一)课前设计
自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。
【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】
(二)课堂设计
1.创设情境,引入新课
师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)
师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?
今天我们就来一起研究圆柱的表面积。(板书课题)
2.探究新知
(1)认识表面积
①回忆旧知
师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?
学生上台演示。
小结:六个面的面积总和是长方体的表面积。
师:正方体呢?
学生自由发言。
②迁移类推新知
师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?
学生操作后,自主发言。
根据学生发言板书:圆柱的`表面积=圆柱的两个底面面积+圆柱的侧面积
【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】
(2)探求表面积计算方法
①自主探索
师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?
学生自由发言,
师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。
以小组为单位进行操作活动。
②交流汇报
各小组展示汇报,引导学生互相评价。
预设1:沿高剪开
预设2:沿斜线剪开
预设3:随意剪开或撕开
引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。
③用字母表示
师:怎么用字母表示呢?
直接计算:S=Ch
利用直径计算:S=πdh
利用半径计算:S=2πrh
④归纳小结
师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。
S表=S侧+2S底
师:要求圆柱的表面积需要知道哪些条件?
练一练:
第21页的做一做。
一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?
学生独立完成后汇报。
师:通过计算,你发现圆柱的表面积和侧面积有什么不同?
引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。
【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】
(3)举一反三,灵活应用
出示例4:
一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)
①理解题意
师:求多少面料就是求什么?
师:“没有底”的帽子如果展开,它由哪几部分组成?
小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。
②独立完成
学生独立完成后交流汇报。
③归纳小结
师:通过计算这道题目,你有什么收获?
引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。
【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】
3.巩固练习
(1)求下面圆柱的侧面积。
①底面周长是1.6m,高是0.7m。
②底面半径是3.2dm,高是5dm。
(2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?
4.课堂总结
师:回顾本节的学习,你们有什么收获?
引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。
(三)课时作业
1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。
(1)测量的数据
(2)计算过程及结果
《圆柱的表面积》教学设计8
(1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)
(2)底面直径6分米,高2分米。
(3)底面周长12.56米,高3米。
三.课堂作业:练习二第6题。
家庭作业:练习二第14题求表面积部分。
第二课教学反思
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的'表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。即使我建议学生们制作了1——100的派表,可练习六第1题需要用到192派,第2题需要用到6.25派,这些结果从派表中都无法查找到结果,必须计算。三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
补充资料:
妙算圆柱的表面积
我们都知识:圆柱的表面积=底面积×2+侧面积
这里,向同学们介绍另一种计算圆柱体表面积的方法。
我们把两个底面分别剪成8个相等的扇形(剪成的扇形越多越精确),取其中一个扇形再平均分成两个小扇形。把这些扇形贴紧长方形的长拼成一个近似的长方形,与原来侧面展开的长方形拼成一个大长方形。(因为我的绘图能力有限,所以图略。)
这个大长方形的面积就是圆柱体的表面积,它的长是圆柱体的底面周长,它的宽是圆柱的高与底面半径的和。这样就可以得到另一种计算圆柱体表面积的公式,即:
圆柱体的表面积=圆柱的底面周长×(高+底面半径)
小朋友,你能用两种不同的公式解答下面的题目吗?
一个圆柱形铁皮油桶,高1.5米, 底面直径0.8米, 做这个没桶至少用铁皮多少平方米?
《圆柱的表面积》教学设计9
教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件
教学重点:圆柱侧面积的计算方法推导。
准备:课前布置学生用纸片试做一个圆柱体。
教学过程:
一、交流做圆柱体的情况。
师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。
生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。
生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。
生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。
师:这说明什么呢?
一生抢着说:“原来底面圆的周长等于长方形的长”。
二、探索圆柱表面积的计算方法。
(1)引入
师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?
生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)
师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?
生:把圆柱剪开,变成我们学过的图形。
师:下面分小组探索圆柱的表面积的计算方法。
(2)小组汇报
生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2
生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。
师:还有不同方法吗?
生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。
师:这样做的结果是一样的,有什么道理呢?
(生陷入思考)
师:从公式看2个底面圆跑到哪去了呢?
一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。
师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。
师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?
生1:半径或直径和高。
生2:有周长和高也行。
生3:我发现已知周长和高,用第二种方法计算比较快。
师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。
三、自学例3
师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?
(2)什么叫“进一法”?什么情况下要运用进一法?
生1:这个水桶只有一个底面,不能多算成2个。
生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。
师:在一些用料问题上,我们要根据实际情况来考虑。
四、 计算练习(出了3道题)
由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。
反思:
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的'生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。
在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
《圆柱的表面积》教学设计10
一、教学目标:
1、知识目标:通过教师的引导和学生的探究使学生理解圆柱体的侧面积和表面积的计算方法,并会正确计算。
2、能力目标:①运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;②使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法。
3、情感目标:①让学生体验出自己探究发现的快乐;②感受到数学与日常生活联系广泛,激发起热爱数学的情感。
二、教学重点:
探究求圆柱体侧面积、表面积的计算方法,并能正确进行计算。
三、教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
四、教具准备:幻灯、 圆柱表面展开图
五、学具准备:长方形纸、剪刀、圆柱体纸盒。
六、教学过程:
(一) 复习导入,推出新知。
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,平形四边形,问相同的问题,再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
师;上节课,我们认识了圆柱,关于圆柱,你都知道它的 哪些知识?它有什么特点?
这节课,我们就再一起来学习有关圆柱的知识。(板书课题)
(二)创设情境,激发学生兴趣。
拿出圆柱体茶叶罐,摸一摸,说说你都摸到了哪些面。 师:想一想工人叔叔做这个茶叶罐是怎样用料的?(学生会说出做两个圆形的底面再加一个侧面)
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
(三)引导探究,学习新知
1.圆柱的侧面积的计算方法。
(1)推导侧面积公式
师:圆柱侧面是一个曲面,如何计算它的`面积呢?下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:展开图是什么形状?与圆柱体的底面有哪些关系? b:你能推导出圆柱体侧面积计算方法吗?
学生合作探索,然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个长正方形的边长等于圆柱体的底面周长,另一边长等于圆柱的高,正方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个平形四边形的底等于圆柱体的底面周长,高等于圆柱的高,平形四边形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
教师小结:强调转化的数学方法
老师板书公式。
2、圆柱表面积的意义
设疑:什么是圆柱的表面积呢?学生看圆柱体,说一说,议一议。
教师概况并板书:侧面积+两个底面积=表面积
3、圆柱的表面积。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
S表=S侧+2S圆
(2)利用公式计算。
(课件出示)
例1 计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。 ①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例2 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。
(1)水桶的侧面积
3.14×20×24=1507.2(平方厘米)
(2)水桶的底面积
3.14×(20÷2)2
=3.14×102
=3.14×100
=314(平方厘米)
(3)需要铁皮
1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
《圆柱的表面积》教学设计11
教学目标:
(1)理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱体的侧面积和表面积。
(2)培养学生观察操作概括的能力以及利用知识合理灵活地分析、解决实际问题地能力。
教学重点:理解和掌握求圆柱表面积的计算方法
教学难点:解答有关圆满柱体实物表面积的实际问题。
教学关键:充分运用多媒体演示,引导学生观察,推导出面积公式。
教具准备:
学生准备自制圆柱、剪刀。
教学过程:
一、检查复习,引入新课。
1.检查:拿出自制的圆柱,分别指出它的底面、侧面和高。
2.复习:(1)点名说说两底的关系,圆柱的高以及侧面积展开可能是什么图形。
(2)圆柱的特征是什么?
(3)答下面问题:
一个圆形花池,直径是5米,周长是多少?
长方形的面积怎样计算?
长方形的面积=长×宽。
3.引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的'表面积。
板书:圆柱的表面积
二、引导探究,学习新知。
1.侧面积的意义和计算方法。
(1)摸一摸自制的圆柱的侧面,谈谈自己感觉到了什么.
(2)想一想用我们已有的知识,能不能求出这个曲面的面积。
小组讨论:有什么好办法求出圆柱的侧面积吗?
(3)剪一剪自制的圆柱交流结果。
(4)说一说:圆柱的侧面可转化为已学过的平面图形,它的侧面积正好等于底面周长与高的乘积。
板书:圆柱的侧面积=底面周长×高
(5)算一算:选出下图中给出的数据,求出侧面积。(单位:厘米)
小组汇报结果:可能出现的计算方法有
方法一:25.12×20=502.4(平方厘米)
方法二:3.14×8×20=502.4(平方厘米)
方法三:3.14×(2×4)×20=502.4(平方厘米)
小结:计算圆柱的侧面积,要根据所给的已知条件灵活计算。
(6)小组合作,量一量自制圆柱的有关数据,求出它的侧面积,并反馈。
(7)完成教科书例1及34页“做一做”的第1题。
2.表面积的意义及计算方法。
(1)自读课本:什么是圆柱的表面积?
板书:圆柱的表面积=侧面积+2个底面积
(2)出示例2(课件显示例2)(单位:厘米)
小组讨论:根据所给数据,可以求出那些面积?学生可能得出以下几种结果。
a、侧面积:2×3.14×5×15=471(平方厘米)
b、2个底面积:2×3.14×5×5=157(平方厘米)
c、表面积:471+157=628(平方厘米)
(3)小结;圆柱的侧面积等于底面周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但是在实际生活中,有许多问题要根据实际情况,合理灵活地求出圆柱地表面积。
三、巩固练习,灵活运用。
1、自学课本,教科书第34页例3。
(1)自读后分小组讨论:求圆柱形水桶所需铁皮地多少,是水桶哪几个面地面积?为什么?什么叫“进一法”为什么1821.2平方厘米≈1900平方厘米呢?
(2)学生反馈:
a.水桶是无盖的,所以求铁皮的面积就是求侧面积和一个底面的面积。
b.在实际生活中,使用材料要比计划得到得结果要多一些,因此要保留整平方厘米,都要向前一位进1,这种方法叫进一法,所以1821.2平方厘米≈1900平方厘米。
2、要知道下利物体的用料面积,要求那些面的总面积?(课件显示)
铁皮制成的糖盒 纸杯 塑料水管
3、只列式不计算。(课件显示)
用铁皮制成圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?
4、实践练习。
(1)小组合作:测量并计算自制圆柱形事物的用料面积。
(2)要计算制做这个圆柱形物体的用料面积,求哪些面的面积?需要知道哪些数据?怎样测量这些数据?
(3)测量:测量所需的数据。(取整厘米数)
(4)计算:根据量得的数据,列出算式并计算结果。
四、布置作业
教科书练习七的第2~5题
板书设计
《圆柱的表面积》教学设计12
教学目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学过程
一、复习准备
(一)口答下列各题(只列式不计算)。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征。
二、探究新知
(一)圆柱的侧面积。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的.面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。
(二)教学例1.
1.出示例1
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
2.学生独立解答
教师板书:
0.25*0.25*3.14*l.8=2.83(平方米)
答:它的侧面积约是2.83平方米。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。
(三)圆柱的表面积。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
2.比较圆柱体的表面积和侧面积的区别。
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
(四)教学例2.
1.出示例2
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答
侧面积:23.14515=471(平方厘米)
底面积:3.14=78.5(平方厘米)
表面积:471+78.52=628(平方厘米)
答:它的表面积是628平方厘米。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
(五)教学例3.
1.出示例3
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
3.学生解答,教师板书。
水桶的侧面积:3.142024=1507.2(平方厘米)
水桶的底面积:3.14
=3.14
=3.14100
=314(平方厘米)
需要铁皮:1507.2+314=1821.21900(平方厘米)
答:做这个水桶要用1900平方厘米。
4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
5.四舍五入法与进一法有什么不同。
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
三、课堂小结
这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
四、巩固练习
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米
2.底面半径是3.2分米,高是5分米
(二)计算下面各圆柱的表面积。(单位:厘米)
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)
五、课后作业
(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
《圆柱的表面积》教学设计13
教材内容和在本册教材中的地位:
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学情分析:
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
教学目标:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点:
重点
圆柱表面积的计算。
难点
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
教学过程
一、激趣导入
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作
(一)圆柱表面积的意义。
设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(三)圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
2、计算圆柱体的侧面积。
(四)求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示
(一)汇报圆柱表面积的意义。
底面积×2+侧面积=表面积
(二)圆柱体侧面积的计算
1、小组合作探究。(剪圆柱形纸筒)
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸
1、求出下面各圆柱的.侧面积.
(1)底面周长是1.6米,高是0.7米
(2)底面半径是3.2分米,高是5分米
2、计算下面各圆柱的表面积.(单位:厘米)
(1)底面直径是12米,高是16米
(2)底面半径是3.2分米,高是5分米
3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?
板书设计
圆柱的表面积
底面积=圆面积
底面积×2+侧面积=表面积
课后反思:
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
《圆柱的表面积》教学设计14
一、教学内容:九年义务教育六年制小学数学人教版第十二册第33-34页的内容。
二、教学目标:
知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。
过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。
情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。
重点:理解并掌握求圆柱体表面积、侧面积的计算方法
难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。
教具:圆柱形模型、剪刀
三、教学过程
(一)创设生活情景,引入新课
我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?” 这节课,我们就来一起学习圆柱的表面积(板书课题) (设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)
(2)引导探究,学习新知
1、认识圆柱的表面
师:我们来做一个“饮料罐”,该怎样做? ?
生:要做一个圆筒,和两个完全相同的圆。
师:用什么形状的纸来做卷筒呢? 同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗? 每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。
(设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)
2、探究圆柱侧面积的计算。
师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么? 学生观察、思考、议论。
生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。
生2:也就是求圆柱体的表面积。
师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件? 生3:我看只要知道圆的半径和高就可以了。
师:我们来听听这位同学是怎么想的。
生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的.面积。 生4:我觉得知道圆的直径和高也可以了。
生5:我还觉得知道圆的周长和高也行。
师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?
生6:因为长方形面积=长×宽 所以圆柱的侧面积=底面周长×高
师:如圆柱展开是平行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。
小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。
师板书:圆柱侧面积=底面周长×高 S侧=ch 出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。
(设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)
3、探究圆柱表面积的计算
师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢? (1) 出示例2
分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。
(设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)
(2) 教学例3
师:在实际生活中,求圆柱的表面积的计算方法有着广泛的应用,我们一起来看例3,应该算几个面?为什么? 学生做完后汇报
师:通过计算,你有哪些收获?
生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。
生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。
(设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)
(3)巩固练习,灵活运用
1、出示牛奶罐、无盖水桶、水管等实物图,引导学生观察思考:计算制作这些物体所用铁皮的面积,各是求哪些面的总面积?
小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。
2、综合练习(只列式,不计算)
(1)用铁皮制作圆柱形的通风管10节,每节长9分米,底面周长3.5分米,至少需要铁皮多少平方米?
(2)砌一个圆柱形水池,底面直径2.5米,深3米,在池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
(3)一个圆柱形的油桶,底面半径4分米,高1米2分米,制这个油桶至少要用铁皮多少平方米?
(设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)
3、实践与应用
小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。
(设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)
(4)全课小结 在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。
板书
圆柱的表面积
圆柱的表面积=两个底面积+侧面积
圆柱的侧面积=底面周长× 高
长方形的面积= 长 × 宽
《圆柱的表面积》教学设计15
【教学内容】
P13-14页例3、例4,完成“做一做”及练习二的部分习题。
【教学目标】
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
【教学重点】
掌握圆柱侧面积和表面积的计算方法。
【教学难点】
运用所学的知识解决简单的实际问题。
【教学准备】
多媒体课件
【自学内容】
学习提示:
(1)长方体、正方体的表面积指的是什么?
(2)圆柱的表面积指的是什么?
(3)圆柱的底面积你会计算吗?侧面积呢?
(4)你知道侧面的形状以及长、宽与圆柱的关系吗?
【教学预设】
一、自学反馈
1、求下面各圆柱的侧面积
(1)底面周长2.5分米,高0.6分米
(2)底面直径8厘米,高12厘米
2、求下面各圆柱的表面积
(1)底面积是40平方厘米,侧面积是25平方厘米
(2)底面半径是2分米,高是5分米
二、关键点拨
1、圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的`长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2、侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3、理解圆柱表面积的含义。
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4、教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
三、巩固练习
1、做第14页“做一做”。(求表面积包括哪些部分?)
2、练习七第6题。
四、分享收获畅谈感想
这节课,你有什么收获?
五、板书:圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想
反思与体会
【《圆柱的表面积》教学设计】相关文章:
《圆柱的表面积》教学设计10-07
《圆柱的表面积》教学设计03-18
圆柱的表面积教学设计05-08
圆柱表面积教学设计12-11
《圆柱的表面积》教学设计05-16
《圆柱的表面积》教学设计范文10-07
【精品】《圆柱的表面积》教学设计05-16
《圆柱的表面积》教学设计[精]06-14
《圆柱的表面积》教学设计优秀03-11
圆柱的表面积教学设计15篇06-13