数学面积的教学设计

时间:2024-06-24 10:32:21 教学资源 投诉 投稿

数学面积的教学设计

  作为一名专为他人授业解惑的人民教师,时常需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的数学面积的教学设计,希望能够帮助到大家。

数学面积的教学设计

数学面积的教学设计1

  教学目标:

  1、让学生经历探索物体表面和封闭图形大小的实际问题的过程,理解面积的含义。

  2、在观察、比较、拼摆、测量等建立常用面积单位表象的活动中,理解面积的含义。在解决问题的过程中,体会规定统一的面积单位的必要性。

  3、通过自主学习,获得成功体验,感受数学的价值。

  教具、学具准备:

  图形卡纸、用来拼摆的小圆形、小正方形、小长方形、两张大小不一样的长方形白纸。

  一、认识面积。

  1、师:假如老师今天要在班里举行一个涂色比赛,看谁能在相同的时间内最快涂完一张纸?(出示:)你会选择哪一张纸来涂?(小的那张。)

  师:为什么?(因为它小,能很快涂完,容易赢……)你们所说的大小指的是哪啊?(学生会指出是纸的面)

  师:大家都认为这张纸的面大,这张纸的面小,要想很快涂完,应该选择面小的这张纸,是吗?(是)

  2、师:这是这张纸的面,那其它物体的面又在哪里呢?如:数学书的封面、桌子的面,请同学们用手摸一摸。

  师:刚才我们摸的都是物体的表面。数学书的面和桌子的面比较,哪个面大哪个面小?(桌子面大,书的面小)

  师:同学们这种通过观察直接比较出物体表面大小的方法叫观察法。再来比较一下数学书的封面和黑板面哪个大?

  师:通过观察我们知道了物体的表面是有大有小的。

  3、出示4个封闭图形、1个不是封闭图形。

  师:哪个图形和其他图形不一样?

  师:那这些图形都是封闭图形。那么它们又有大小吗?(有)

  师:(板书面积的定义)物体表面或封闭图形的大小,就是它们的面积。

  师:课桌面的大小就是课桌的面积;西瓜表面的大小就是西瓜的面积;你能像老师一样再来说说其他物体的面积吗?(生说)

  二、认识面积单位。

  1、(教师出示3张彩纸,红色、黄色、蓝色)

  师:小组里任选选择其中的两张彩纸,比比谁大谁小,要求:不能改变彩纸的形状。(小组活动)

  (1、选红色和黄色:叠在一起,师可以顺势评价,在数学里叫重叠法。

  2、选黄色和绿色:一眼就可以看出来,用观察法。

  3、选绿色和红色:重叠但还是比不出谁大谁小。)

  师:到底谁大谁小?你来猜猜看。(生随意猜)

  师:红色和黄色比,红色大;黄色和绿色比,绿色大;绿色和红色比,不知道谁大谁小?那怎么办呢?

  2、师:我们用手里的数学学具来帮助比较这两个图形的大小。(生活动并汇报)

  师:有的用,有的用,你更支持哪一种摆法呢?

  师:这些小正方形的面积就是这张纸的面积;这些小○的面积只能说大约是这张纸的面积。

  3、(一个正方形由9个大正方形组成,另一个正方形由16个小正方形组成。)先不出示,让学生猜一猜。

  师:哪个面积大?(生猜,然后出示图片)

  师:为什么9格的图形比16格的要大?

  师:在比较两个物体表面的面积的时候,必须要用统一的.标准。这个统一的标准,就是面积的单位。那常用的面积单位有哪些呢?

  4、师:常用的面积单位有平方厘米、平方分米、平方米。

  师:你想不想知道1平方厘米、1平方分米、1平方米是多大?(先和老师找到1平方厘米的正方形)

  师:用你的尺量一量这个小正方形的边长是多少?(1厘米)

  (板书:边长是1厘米的正方形,面积是1平方厘米)

  师:找找生活中哪些物体表面的面积是1平方厘米。(生找)哪个手指甲的面积最接近1平方厘米?

  师:你想不想知道1平方分米是多大?

  师:边长1分米的正方形,面积是1平方分米。(板书)

  用你的尺量量,验证一下。

  师:你能不能用手比划1平方分米的大小。(生一起比划)

  师:用你手里1平方分米的正方形去测量一下数学书封面的面积是多少?

  师:你觉得1平方米是边长多大的正方形?(1米)

  师:你先比划一下1米有多长。(生比划)小组里的同学合作,伸开双臂比划一下1平方米。

  5、感知1平方米的大小。

  师:那1平方米又是多大呢?(出示1平方米的正方形)

  这就是1平方米的面积,大家猜猜,这里面能放几本数学书呢?来,验证一下。(学生出来放书示范)

  三、巩固认知,应用新知。

  填上合适的面积单位。

  教室该用()作单位。橡皮该用()作单位。

  笔盒该用()作单位。黑板该用()作单位。

  四、课后小结。

  师:这节课你都学到了什么?

  师:把你的收获带回家,找找生活中的1平方厘米、1平方分米、1平方米。

数学面积的教学设计2

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的合作精神和创新意识。

  教学重点:推导出圆的面积公式及其应用。

  教学难点:圆与转化后的图形的联系。

  教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。

  教学过程:

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、转化后的图形与原来的图形面积相等吗?(板书:等积)

  6、(出示图形):这是什么图形?圆和我们以前学过的.平面图形有什么不同?(板书:曲)

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

数学面积的教学设计3

  【教学内容】

  探索活动(二)《三角形的面积》教材第25页——26页

  【教学目标】

  知识目标:①使学生经历、理解三角形面积公式的推导过程。

  ②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。

  【教学重点】

  理解三角形面积计算公式,正确计算三角形的面积 理

  【教学难点】

  理解三角形面积公式的推导过程。

  【课前准备】

  三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

  教师准备多媒体课件一份、演示教具一套

  【教学进程】

  一 复习引入

  1、出示课件

  师:比一比,下面两个图形哪个面积大?

  生:观察 比较 说说你是怎么比较的

  师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

  2、回顾平形四边形面积公式的推导

  师:谁能告诉老师平形四边形面积公式推导过程

  生答后,师课件演示

  师:在这个过程,我们运用了一个什么数学思想。

  生:转化

  师板书:转化

  师:现在,我们已经掌握了几种图形的面积公式了呢?

  生答后,师简要小结

  3、设疑,引入新课

  小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

  师板书:三角形的面积

  二、探究新知

  1、知识猜想

  师:学习之前,大家先猜一猜,三角形的'面积可能跟什么有关?

  生讨论、作答(可能和底、高有关)

  2、动手实践

  一组学生拿出直角三角形学具

  二组拿出锐角三角形学具

  三组拿出钝角三角形学具

  四组拿出任意三角形学具

  剪一剪、拼一拼,你能发现什么?

  师巡回检查、指导

  3、实践汇报

  各组汇报实践结果

  一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

  二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

  三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

  四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

  各组就实践汇报展开讨论。

  4、演示总结

  师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?

  出示课件(演示1两个完全一样的三角形拼成平行四边形)

  师引导生观察

  (1)、拼成的平行四边形和原三角形面积有什么关系?

  生:平行四边形面积是三角形面积的2倍。

  (2)、平行四边形的底和高与三角形的哪些部分有关?

  生:平行四边形的高等于三角形的高;

  平行四边形的底等于三角形的底

  师小结并板书

  平等四边形的面积= 底 × 高

  三角形的面积= 底 × 高 ÷ 2

  出示课件(演示2一个三角形剪拼成平行四边形)

  师:观察平行四边形面积与原三角形面积有何关系?

  生:相等

  师:平行四边形的底和高与三角形底、高有什么关系?

  生:平行四边形的底等于三角形的底

  平行四边形的高等于三角形的高的一半

  师小结并板书

  平行四边形面积= 底 × 高

  三角形面积= 底 × 高 ÷ 2

  三角形的面积=底×高÷2

  字母表示: S=ah÷2

  5、师生一起回顾三角形面积公式的推导过程

  6、基本练习

  师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

  生:能

  师:好那大家帮他算一算

  生解答,师巡回检查

  强调:1、注意运用公式 2、注意面积单位

  三、巩固检测

  1、出示课件

  师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

  生答、师订正

  师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

  生独立完成

  师统一订正

  2、出示课件

  师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

  生板演 师讲解订正

  四、回顾总结

  师:学完这节课,你都有些什么收获呢?

  生讨论、作答

  师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

  附:【板书设计】

  三角形的面积

  平行四边形面积 = 底 × 高

  转化

  三角形面积= 底 × 高 ÷ 2

  S= a×h÷2

数学面积的教学设计4

  知识目标:

  结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。

  能力目标:

  能够认识长方体和正方体,具有初步的立体空间想象能力。

  情感目标:

  使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

  教学重点、难点:

  能够准确的计算长方体和正方体的表面积。

  教学方法:师生共同归纳和推理。

  教学准备:长方体纸盒

  教学过程:

  一、复习导入:

  教师让学生回顾上一节课学习的`长方体和正方体的表面积,并对学生进行提问。

  学生回答(长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)

  二、课堂练习:

  学生做第1题,求出下列图形的表面积。教师注意观察学生运用公式是否正确,对出现错误的同学及时指导。

  学生做第2题,本题目计算量比较大,防止学生出现计算错误。

  学生做第3题,教师应该让学生知道电视机布罩只有5个面。

  学生做第4题,这个题目的要点是只有5个面,学生要密切联系生活中的实际解决问题。

  学生做第5题,教师让学生注意观察教室内墙面积。

  学生做第6题,分小组讨论解决问题,教师巡视并进行必要的指导。

  三、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  长方体的表面积

  长方体的表面积=(长×宽+长×高+高×宽)×2

  (10×4+10×8+8×4)×2

  正方体的表面积=边长×边长×6

  7×7×6

数学面积的教学设计5

  教学目标:

  1、经历探索长方形和正方形面积公式的过程,掌握长方形、正方形 面积计算的方法,能够解决相关的实际问题。

  2、 以单位面积为参照, 估计长方形和正方形的面积, 提高估测能力。

  3、在实践操作、讨论交流等活动中,积累活动经验,初步养成独立 思考,勇于探索的习惯。

  教学难点: 理解长方形所含面积单位的个数等于长方形的长与宽的 乘积。

  教学准备: 课件、1 平方厘米的面积单位若干、长方形卡片、直尺

  教学过程:

  课前谈话:我们刚刚学习了面积和面积单位,你都知道了些什么?

  一、复习导入

  概括起来我们知道了两件事:什么是面积和面积单位; 知道用面积单 位铺满的方法可以知道物体表面或封闭图形的面积。 这节课我们继续 来学习有关面积的知识(板书课题:长方形的面积) 。

  二、动手操作、自主探究

  (一)提供材料,启发研究 这张方形卡片的面积是多少?

  (1)估一估。考考你的眼力,估一估这张长方形卡片的面积大约是 多少?

  (2)怎样才能准确知道卡片的面积到底有多大?

  (3)就用你们刚才想到的方法看能不能求出它的面积?

  (二)展示、交流方法

  1.交流。

  (1)它的面积是多少?

  (2)谁估计得比较接近?

  (3)你用的什么测量方法?

  2.展示交流“全铺”情况。

  (1)沿长摆了几个?有这样的几行?一共是几个几?

  (2)算式怎么表示?(板书:4×3=12)这里的 4 表示什么? 3 呢? 一共有多少个面积单位?

  (3)用 1 平方厘米的面积单位全部铺满,这是一种方法,谁和他的 方法一样?

  [设计意图:通过动手操作,用 1 平方厘米的面积单位来测量卡片的 实践活动,使学生学会选择合适的面积单位测量面积,通过铺满、数 面积单位的个数,使学生建立和深化面积意识:把所有的面积单位都 数上,才是卡片的面积。]

  3.展示交流“半铺”情况:沿长一行,沿宽一列。

  (1)探究方法:这是沿长摆几个,沿宽摆几个? 铺满是多少个面积单位吗?

  (3)课件演示:沿长沿宽一共是多少个

  (4)这种方法不用全摆满,通过想就知道全部铺满以后有多少面积 单位了。

  [设计意图:通过测量卡片的面积,使学生初步体验到全铺麻烦, 到铺一部分,只摆一行一 列,利用想象也能算出面积单位的总数,在操作中对直接经验进行修 改。]

  4.运用半铺方法测量长方形面积。

  (1)用这个方法,比比谁能很快地求出这个长方形卡片的面积。

  ( 2 )面积是多少?(课件展示:沿长沿宽一共是多少 个)

  [设计意图:通过测量卡片的面积,促学生深入思考,再次丰富学生 间接测量经验,优化方法的同时提高语言表达能力。]

  (2)能想象出

  5.探究更简便的方法——间接测量方法。

  (1) “半铺”的`方法比较简单,但它是不是适用于任何一个长方形面 积的计算呢?

  (2)那我们今后就揣着平方厘米、平方分米,扛着平方米的面积单 位到处去测量面积吧。比如足球场场地面积,想说些什么?

  (3)讨论:我们不妨把这张卡片就当作,大家开动脑筋,小组 研究能不能找到简便的方法?

  (4)探究交流:为什么长 20 厘米就能摆 20 个 1 平方厘米的面积单 位呢?

  (5)为什么宽是 4 厘米,就能摆这样地行呢?怎么列式?

  (6)量出长和宽还真的能知道长方形的面积呢!

  [设计意图:通过探究测量较大面积卡片的方法,引起学生自觉改进 旧方法的意识,发现长方形长、宽与面积单位边长个数的关系,突破 由面积单位到长度单位的转化这一理解难点。]

  6.利用多张卡片深 化理解长方形的面积计算方法。

  (1)计算长方形卡片面积。 它的面积是多少啊?怎么想的?(课件)看到长 9 厘米,就说明能 摆,宽 6 厘米,说明,一共多少个面积单位?所以。怎 样列式?

  (2)计算长方形卡片面积。 比比谁能很快地算出这张卡片的面积,面积是多少?怎么列式?(板 书算式。 ) 大家共同研究,有了这么了不起的发现!

  [设计意图:培养想象能力,内化操作活动,展现思维状态,推进学 生思维发展,深化理解面积计算方法。]

  (三)归纳公式

  (1) 研究到现在, 你知道量出长和宽后怎样求出长方形的面积吗?

  (2)长方形的面积=长×宽(板书) 。

  (3) (指算式)看到长几厘 米,就知道能摆几个面积单位,宽几厘米,就知道能摆这样的几行。

  所以长的厘米数乘宽的厘米数等于所含的平方厘米数。

  三、在解决 实际问题中验证公式

  1.这种发现对所有的长方形的面积都适用吗?

  2.交流反馈:选取教室里表面是长方形的物体,先估计它的面积, 再量出它的长和宽,计算出面积,看看估的和算的是不是较接近。 3.练习:应用公式解决实际问题。

  [设计意图:联系生活实际提供解决实际问题的机会巩固新知,感受 数学与生活的联系以及数学的价值。]

  (四)总结研究过程,渗透数学研究的方法 回顾一下咱们的研究过程:同学们经历了“解决长方形卡片面积问 题—直接测量到不断改进测量方法—发现规律: 间接测量方法—形成

  方法:总结求长方形面积的一般方法”的研究过程。今天我们研究出 了求长方形的好方法,能解决许多的实际问题,其实利用这个方法, 还可以求其他图形的面积,今后我们会继续学习。

  四、课后反思:

数学面积的教学设计6

  一、 案例背景:

  执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。

  教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。

  二、教材简析:

  平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。

  三、教学诠释与研究。

  “ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。

  现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?

  如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的'关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:

  小黑板出示:

  师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?

  生:图1的面积是12平方厘米。

  师:你们是怎么想的?

  生1:我是一块块数的。

  生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。

  师:谁能很快知道图2这个图形的面积吗?

  生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。

  生2:把中间的一排往左推一格,所以还是12平方厘米。

  生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。

  师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?

  生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。

  生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。

  师:对于这个图形,我们用割补的方法能很快知道它的面积。

  接下来,小黑板出示:

  比较一下,图中的平行四边形的面积与长方形面积大小如何?

  生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。

  生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。

  师:把平行四边形割补成长方形,图形的什么变了,什么没有变?

  生:图形的形状变了,面积大小没有变。

  师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。

  反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。

  几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:

  师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?

  学生进行操作实践,加验证。

  师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?

  学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。

  学生演示时,师追问学生:是沿着哪一条线剪的?

  生:沿着平行四边形地高剪开的。

  师:为什么要沿着高剪?

  生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。

  师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?

  有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。

  全班交流自己的结果。

  生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。

  师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?

  生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。

  结合学生的回答,板书:

  长 方 形 面 积 = 长×宽

  平行四边形面积 = 底×高

  师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?

  生1:s=a×h

  生2:还可以用小圆点代替乘号。

  生3:还可以省略小圆点,写作:s=ah

  师:这节课,你们学到了什么?

  生:学会了计算平行四边形的面积。

  师:是怎么学会的呢?

  部分学生沉默,估计是学生不善于表达。

  师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?

  反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。

数学面积的教学设计7

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的合作精神和创新意识。

  教学重点:

  推导出圆的面积公式及其应用。

  教学难点:

  圆与转化后的图形的联系。

  教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图

  教学过程:

  一、以新引旧、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。

  5、转化后的图形与原来的图形面积相等吗?

  6、(出示图形):这是什么图形?圆和我们以前学过的`平面图形有什么不同?

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容

数学面积的教学设计8

  教材分析

  义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。

  学情分析

  1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。

  2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。

  教学目标

  知识与技能

  1.使学生理解和掌握平行四边形的面积计算公式。

  2、会正确计算平行四边形的面积。

  过程与方法:

  1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,

  2、发展学生的空间观念。

  情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。

  教学重点和难点

  重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。

  教学过程

  一、复习导入

  1.什么叫面积?常用的面积计量单位有那些?

  2.出示一张长方形纸,他是什么形状?它的面积怎么算?

  二、探究新知

  1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?

  板书课题:平行四边形的面积

  2.用数方格的方法计算面积。

  (1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

  (2)同桌合作完成。

  (3)汇报结果,可用投影展示学生填好的.表格。

  (4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  (2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

  a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  b.请学生演示剪拼的过程及结果。

  c.教师用教具演示剪—平移—拼的过程。

  (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。出示讨论题:

  ①拼出的长方形和原来的平行四边形比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  S=ah

  三、 应用反馈。

  1.出示教材练习十五第1题。读题并理解题意。

  学生试做,交流作法和结果。

  2.讨论:下面两个平行四边形的面积相等吗?为什么?

  学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)

  四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)

数学面积的教学设计9

  教学目标

  1.能正确运用圆的面积公式计算圆的面积,并能在具体的生活情境中将实际问题转化为数学问题,用所学的圆的面积知识解决一些简单的问题。

  2.使学生在参与数学学习活动的过程中,初步养成独立思考,善于发现问题和提出问题,并能有条理地表达自己解决问题的思路的习惯,体会学习成功的快乐,树立学好数学的信心。

  3.在实际情境中体会数学与生活的联系,培养学生对数学的热情。

  教学重点

  灵活运用圆的面积公式解决实际问题

  教学难点

  能够把实际问题转化为数学问题,用数学的方法予以解决。

  教学过程

  一、创设情境,引入课题

  二、自学课本,提出疑难

  自学课本16页前两部分的内容,并尝试完成这两道题,将不明白的地方标出来?

  三、组内交流,质疑问难

  请小组内所有学生将自己不明白或不理解的问题提出来在组内互帮互学,并能够把自己解决问题的思路说出来,互相交流。组长在汇报时要说出本组主要解决了什么问题,或者说我们通过学习交流知道了什么,还有什么不明白的地方。

  四、汇报展示,梳理引导

  1.组织各小组进行汇报展示组内交流情况。

  学生需讨论的问题是:

  (1)第一个情境中把实际问题转化为数学问题,即根据题意求能浇灌多大面积的农田,就是求半径是3厘米的圆的面积。

  (2)第二个情境中具有一定的综合性,所以知道要求圆的.面积是多少?必须先求出圆的半径;另一方面从圆的周长公式可知,已知周长可以求出圆的半径。

  五、练习巩固,拓展延伸

  1.闹钟的分针长10cm。

  (1)从2时到3时分针扫过的面积是多少?

  (2)从2时到3时分针针尖走过了多少厘米?

  (3)如果时针的长度是8cm,那么从2时到3时时针扫过的面积是多少?

  先独立思考,然后两人交流一下再独立完成,如果还有困难可以在小组内交流

  2.一块边长为10米的正方形草地,在正方形右下角的顶点上有一棵树,在树上拴着一头牛,绳长是10米,牛能吃到的草场面积是多少?(拴牛的长度忽略不计)

  你能画图表示题意吗?

  小组同学合作完成

  认真思考,完成下题

  1.闹钟的分针长10cm。

  (1)从2时到3时分针扫过的面积是多少?

  (2)从2时到3时分针针尖走过了多少厘米?

  (3)如果时针的长度是8cm,那么从1时到6时时针扫过的面积是多少?

  2.一块边长为10米的正方形草地,在正方形右下角的顶点上有一棵树,在树上拴着一头牛,绳长是10米,牛能吃到的草场面积是多少?(拴牛的长度忽略不计)

  你能画图表示题意吗?

数学面积的教学设计10

  教学目标

  1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学

  重难点

  教学重点:理解并掌握平行四边形的面积公式

  教学难点:理解平行四边形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  1、说出学过的平面图形。

  2、在这些图形中,哪些图形的面积你会求?

  二、探究新知:

  1、教学例1:

  (1)出示例1中的`第1组图

  要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

  (2)出示例1中的第2组图

  要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

  (3)揭示课题:

  师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)

  2、教学例2:

  (1)出示一个平行四边形

  师:你能想办法把这个平行四边形转化成学过的图形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况

  第一种:①沿着平行四边形的高剪下左边的直角三角形。

  ②把这个三角形向右平移。

  ③到斜边重合。

  第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

  ②把左侧的梯形向右平移。

  ③道斜边重合。

  (4)教室用课件进行演示并小结。

  师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  师生活动

  思考与调整

  (5)小组讨论:

  ①转化后长方形的面积与原平行四边形面积相等吗?

  ②长方形的长与平行四边形的底有什么关系?

  ③长方形的宽与平行四边形的高有什么关系?

  (6)学生总结,形成下面的板书:

  长方形的面积=长X宽

  平行四边形的面积=底X高

  3、教学例3:

  (1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

  转化后的长方形

  平行四边形

  长(cm)

  宽(cm)

  面积(cm)

  底(cm)

  高(cm)

  面积(cm)

  (2)学生操作,反馈交流。

  (3)用字母表示面公式:S=ah(板书)

  三、巩固练习:

  1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

  2、指导完成练一练:强调底和高的对应关系。

  四、总结:

  师:通过今天的学习有哪些收获?

  板书设计:平行四边形面积的计算

  转化

  已学过的图形新图形

  割补、剪拼

  因为长方形的面积=长×宽

  所以平行四边形的面积=底×高

数学面积的教学设计11

  教学目标:

  1、经历探索长方形、正方形面积计算方法的过程,并总结出长方形和正方形面积计算公式。

  2、掌握长方形、正方形面积计算公式,能运用公式正确地计算长方形和正方形的面积。

  3、了解长方形和正方形面积计算在实际生活中的应用,体会数学的价值。

  4、结合长方形和正方形面积计算培养学生的探索精神、空间观念和解决问题的能力。

  教学过程:

  1、课前游戏:考考你的观察力。

  2、动画引入:

  蓝猫三千问,08年什么大事?森林里举行运动会。从这幅图中你看到了哪些熟悉的图形?

  生:长方形和正方形。

  蓝猫:这两个场地的面积有多大?

  师:有哪些办法?

  生1:用面积单位去摆。

  生2:可以计算。用长乘宽,我是预习的。

  师:你能从摆面积单位的过程中,发现面积计算的方法吗?我们今天来研究。

  板书:长方形、正方形面积的计算。

  3、主动探究

  (1)提供生:透明方格纸、1平方厘米正方形纸块、尺子和一张印有六个图形的纸。

  师:请自己选择材料和工具,想办法求出六个图形的面积,并把数据记录下来。

  作业纸:

  长度单位:厘米

  1号图(横放):长5宽32号图(竖放):长4宽2

  3号图:正方形边长24号图:正方形边长3

  5号图(横放):长4宽16号图(横放):长6宽4

  (2)学生个体活动,然后小组交流。

  师:每人在组内交流你选择了什么图形,用什么方法得到了面积。小组内选择一人记录,一人汇报。

  汇报:

  第1组:用透明小正方形纸覆盖在2号图形上,2号图形是长4宽2,有8个小正方形,所以它的面积是8平方厘米。再覆盖在6号图形上,6号图形是长6宽4,有24个小正方形,所以它的面积是24平方厘米。

  同时另一生记录在黑板上。

  师:你们觉得这种方法怎么样?

  生:很简单。

  师:也是这样做的举手,有不同的吗?

  第2组:用小正方形摆在第1个图形上,横着摆一排5个,竖着摆了3个,一共要摆15个小正方形,面积是15平方厘米,同样方法摆第4个图形。

  师:(指图1)为什么只摆7个?

  生:因为一排5个,竖着摆3排就行了。

  第3组:用尺子画图1格子,长是5画5格,宽是3画3行,一共是15个小正方形,面积是15平方厘米。

  师小结:刚才用透明小方格去量,用尺子画格子、用小正方形去摆,知道了这些图形的`面积。

  (3)比较这些方法,有什么相同的地方?

  生:都是数方格的。

  师小结:长是几,就是有几个这样的面积单位,宽是几,就有几排这样的面积单位,长方形面积就是含有面积单位的个数。

  (4)长方形面积单位和什么有关?又有什么关系?

  生:长方形面积与长和宽有关。

  师:能结合操作中的数据,说说它们之间有什么关系?

  生:1号图形长是5厘米,宽是3厘米。面积有3个5是15平方厘米。

  2号图形长是4厘米,宽是2厘米,面积是8平方厘米。

  3号图形长是3厘米,宽是3厘米,面积是9平方厘米……

  师:这些都说明了什么?

  生:正方形是特殊的长方形。

  师:都说明了?

  生:长方形面积是长乘宽。

  师:长方形面积所含的平方厘米数正好是长和宽所含厘米数的积。

  请生闭眼想象,长是7厘米,宽是3厘米,面积多少平方厘米?

  长8米,宽5米,面积多少平方米?

  师:长方形面积可以怎样计算?

  生:长乘宽(师板书)

  师:正方形面积怎样算?

  生:正方形面积等于边长乘边长。

  师:你怎么想的?正方形面积为什么等于边长乘边长?

  生:因为正方形的四条边一样长。

  师:正方形是长、宽相等的特殊的长方形。面积也可以用长乘宽,也就是边长乘边长(板书)

  集体朗读公式。

  3、生活中的应用

  (1)计算长方形面积要知道什么条件?要求正方形面积呢?

  图:举重场、田径场(无数据)

  师:要计算这两个场地的面积,要知道什么?

  生:长和宽边长

  图:两块场地出现数据。田径场:长50米,宽30米举重场:边长8米

  生计算。汇报:

  生1:举重场面积64平方米,8乘8=64生2:50乘30=1500平方米

  (2)长方形和正方形在生活中随处可见。

  图:篮球场P99--5求面积。长28米,宽15米生汇报。

  (3)奖品:蓝猫书签

  师:书签是什么形状?估计面积大约多少平方厘米?

  生1:大约是48平方厘米。生2:这个书签大约是45平方厘米。

  师:你怎么想的?生:长9厘米,宽是5厘米。

  师:你为什么先估计它的长和宽?生:知道长和宽,就能估出面积。

  请生测量书签长和宽,计算面积。汇报;长是12,宽是4,12乘4=48平方厘米

  (4)主席台背景图:每个小正方形边长是2米。算背景图面积。

  生1:将小正方形下移得到长,左移得到宽。

  生2:画出长方形长和宽的格子。

  4、本节课你有什么收获?

数学面积的教学设计12

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是xxx 、xxx和xxx。

  2、底面是xxxx形,它的面积=xxx。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由xxx和xxx组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=xxx

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的'xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。

  列式计算:

  ① 帽子的侧面积=xxx

  ② 帽顶的面积=xxx

  ③ 这顶帽子需要用面料=xxx

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

数学面积的教学设计13

  教学目标

  1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

  2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。

  3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。

  教学重点

  掌握并会用公式计算平形四边形的面积。

  教学难点

  利用转化的数学思想和方法来探索平形四边形面积公式

  教学教程:

  一、创设情境,引出问题

  同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)

  那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)

  平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)

  今天我们就来研究平行四边形的面积公式

  二、自主探究,动手操作

  1、出示要求

  把平行四边形的纸片剪一刀,然后拼成一个长方形。

  2、学生动手操作,教师深入学生当中观察指导

  3、汇报会交流。

  生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。

  生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。

  师:要拼成一个长方形要怎么做才能办到呢?

  生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。

  师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。

  4、议一议:平行四边形和拼出的长方形有什么关系呢?

  生1:拼成的.长方形的长是平行四边形的底,长方形的高是平行四边形的高。

  生2:拼成的平行四边形的面积和长方形的面积想等。

  师:那谁来总结一下平行四边形的面积公式。

  生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)

  5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。

  生:S=a×h

  过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。

  三、巩固训练,拓展延伸

  1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。

  2、练一练第1题。指名读题,独立完成。

  3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。

  生:两个图形的面积相等,因为它们的底一样,高也相等。

  生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。

  师:也就是说,等底等高的平行四边形的面积想等。

  四、课堂小结

  通过本节课的学习,你有哪些收获?

  五、布置作业

  1、完成57页第2、3题

  2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。

数学面积的教学设计14

  设计说明

  本课学习的内容是比较图形的面积,

  一是让学生进一步体会面积的含义;

  二是掌握比较图形面积大小的基本方法。基于上述学习内容,教学设计突出以下两点:

  1、采取自主探究、小组合作交流的学习方式,把方格纸作为载体,呈现各种形状的平面图形,并提出明确的要求。

  这样就为学生提供了思考的空间,让学生根据自己的经验,选择不同的图形进行面积大小的比较,掌握比较图形面积大小的方法并在交流中体验方法的多样性。

  2、安排人物的提示性对话,向学生渗透比较图形面积大小可以使用的几种方法,以此激发学生自主探索比较图形面积大小方法的欲望。

  同时,通过学生间的相互交流,让学生了解比较图形面积大小的各种方法。这样开放式的编排可以发散学生的思维,使学生积极主动地思考,锻炼思维的敏锐性。

  课前准备

  教师准备 PPT课件 各种硬纸板做的平面图形

  学生准备 附页2中的图形 方格纸 七巧板

  教学过程

  ⊙直奔主题,揭示新课

  出示两个用硬纸板做的平面图形。

  (1)说一说这两个图形哪个面积大,哪个面积小。

  (2)提问:如果两个平面图形的形状不同,大小很难区分时,你有什么办法?

  (3)揭示课题:比较图形的面积。

  设计意图:课程的开始教师就抛出一个和教学重点有关的问题,并且直接进入主题:比较图形的面积,更好地将学生的思维带入到新课的学习中,激发学生的求知欲望。

  ⊙自主探究,学习新知

  1、课件出示教材49页方格纸中的.图形。

  师:这些图形的面积大小有什么关系?请同学们剪下教材附页2中的图形仔细观察、比较,看谁的发现最多!

  (学生利用已经剪好的附页2中的图形拼一拼)

  2、组织交流,让学生说说自己的发现,教师做好记录。

  3、解决问题一

  找出两个面积相等的图形,与同伴说一说你是怎样找到的。

  师:哪几个图形的面积是相等的,理由是什么?

  预设生1:图①和图③的面积相等,我是通过数方格得到的。

  生2:图①和图③的面积相等,我是通过平移得到的。

  生3:图②和图⑥的面积相等,我是用重叠的方法得到的。

  生4:图②和图⑤的面积相等,把这两个图形重叠在一起,能够完全重合。

  生5:图⑧和图⑨的形状不同,但面积相等,我是用数方格的方法得到的。

  生6:图⑨和图⑩的形状也不同,但面积相等,我也是用数方格的方法得到的。

  ……

  师:我们在比较两个图形的面积是否相等时,都用到了哪些方法?

  引导学生归纳总结。(数方格、重叠)

  4、解决问题二 笑笑的发现你同意吗?

  师:笑笑发现了什么?请你们也照样子拼一拼,验证一下笑笑的发现是否正确。

  预设生:图⑤和图⑥合起来与图⑧的面积相等。

  与同桌合作动手拼一拼,得到答案:图⑤和图⑥合在一起与图⑧的面积相等,笑笑的发现是正确的。

  师:你还有其他的发现吗?

  预设生:图①和图③合起来与图⑦的面积相等。

数学面积的教学设计15

  【设计说明】

  《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69页例2的教学内容。环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。

  教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?

  充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。

  【教学设计】

  教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69页例2。

  教学目标:

  1.认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。

  2.学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。

  3.培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的良好习惯。

  教学重点:探究圆环面积的计算方法。

  教学难点:理解环形的形成过程,掌握环形面积的计算方法。

  教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。

  【教学过程】

  一、复习旧知,引入新知

  1.计算圆的面积

  (1)半径是5厘米

  (2)直径8厘米

  2.说一说圆的面积计算公式

  二、自主探究,掌握方法

  1.认识环形

  (1)我们来欣赏一组美丽的图片。

  (课件演示:环形花坛、奥运五环标志、光盘等环形图案)

  (2)图片的形状和我们学过的什么图形很相似?(圆)

  (3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)

  (4)学生找生活中的环形。

  2.建立环形表象

  (1)利用手边的工具自己做出一个圆环。

  (2)学生可利用工具剪出环形或画出环形。

  3.发现环形特点

  老师拿着学生制作的环形提问:

  “这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)

  (1)解释什么叫外圆半径和内圆半径。

  (2)求环形面积是求哪部分面积?

  (3)你怎样求这个环形的面积?

  (要求学生先独立思考,再在小组内交流)

  (4)师:谁能总结一下环形的面积是怎样计算的?

  (学生讨论、交流、总结,教师点拨、总结,板书:环形的面积=外圆面积—内圆面积:S=πR2-πr2)

  师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?

  4.教学例2内容

  光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的'?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生讨论。

  (3)学生试做,指生演板。

  (4)交流算法,学生将列式板书:

  3.14×(6×6)-3.14×(2×2)

  =113.04- 12.56

  =100.48(平方厘米)

  3.14×(6×6 -2×2)

  =3.14×32

  =100.48(平方厘米)

  (5)比较两种算法的不同。

  三、应用新知,解决问题

  1.计算阴影部分的面积

  (半个环形:R=10厘米,r= 6厘米)

  2.判断正误

  (1)在圆内剪去一个小圆就得到一个圆环。()

  (2)环宽=外圆半径-内圆半径。()

  3.一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?

  四、反思体验,总结提高

  学生畅谈本节课的学习收获,教师适当总结归纳。

  【教学反思】

  《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。

  一、在直观演示中,培养学生的思维能力

  1.深入了解学生,找准教学的起点

  这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。

  2.深入钻研教材,促进学生思维的发展

  在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。

  二、在动手操作中,培养学生的观察能力

  师:请同学们拿出做好的环形,说说你是怎样去做的?

  生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。

  生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。

  师:前两位同学都说到了哪几点?

  生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。

  师:说说日常生活中有哪些物体的表面是环形的?

  生:光盘、环形垫片等。

  在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。

  三、在探究发现中,碰撞学生的智慧的火花

  师:判别下列图形中,哪些是环形?

  师:观察得真仔细!环形的宽度相等。

  师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?

  (生纷纷作答)

  师:环形的面积与什么有关?

  生1:环形的面积与环形的宽度有关。

  生2:环形的面积与外圆、内圆的面积有关。

  生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。

  (这位学生博得了全班学生热烈的掌声)

  师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?

  生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。

  生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。

  上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性

【数学面积的教学设计】相关文章:

数学面积的教学设计06-04

认识面积数学教学设计10-09

《面积与面积单位》教学设计06-01

小学数学《圆的面积》教学设计范文10-10

面积教学设计05-30

《面积》教学设计03-24

“面积”的教学设计06-02

数学《圆柱的表面积》教学设计优秀11-14

小学数学《圆柱的表面积》教学设计06-25