四年级下册平均数教学设计

时间:2024-07-26 08:44:59 教学资源 投诉 投稿

四年级下册平均数教学设计

  在教学工作者实际的教学活动中,编写教学设计是必不可少的,借助教学设计可以更好地组织教学活动。我们应该怎么写教学设计呢?下面是小编为大家整理的四年级下册平均数教学设计,仅供参考,欢迎大家阅读。

四年级下册平均数教学设计

四年级下册平均数教学设计1

  教材从现实生活出发,选取学生身边的事例,将生活素材贯穿于整个教学活动的始终,遵循了数学源于生活、寓于生活、用于生活的理念。让学生在动手实践的活动中学会用平均数来比较两组数的总体情况,体会数学与生活的联系。平均数是统计中的一个重要概念。它通常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。平均数的概念与平均分的意义是不完全一样的,平均数是一个“虚拟”的数,它是借助平均分的意义通过计算得到的。它具有直观、简明的特点,在生活中经常用到。

  平均数是统计中的一个重要概念,而求平均数是统计的基本方法之一。此时的学生虽已初步具有了信息的分析、处理和对实际问题的决策能力。但他们的思维仍处于由具体形象思维过渡到抽象逻辑思维的转折时期,仍需要依据实际经验或借助具体形象的支持,通过下定义的方式获得概念。针对这一特点,在理解平均数的概念时,我让学生根据自身已有的生活经验操作实践和通过动态演示,把概念的关键属性和学生的认知结构相联系,使学生掌握概念。另外,三年级的学生好奇心强,求知欲旺,具有一定的探索意识,故在教学时,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决问题。而教师只是作为组织者、合作者的身份引导学生从不同角度发现生活中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。

  有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的、动手实践、自主探索与合作交流是学生学习的重要方式。本课教学在新理念的指导下主要设计了“创设情境、初步感知—合作探究、深化理解──应用知识、解决问题──拓展延伸、深化提高”的数学学习过程。

  1、知道平均数的含义和求法。

  2、加深对“平均数”和“平均分”意义的理解。

  3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。

  难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。

  一、创设情境,初步感知

  1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。

  2、感知。

  (1)学生思考,想移的过程

  (2)教师操作引导:现在每排都有7个,7是这组数的什么数?

  (3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。

  师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。]

  二、合作探究,深化理解

  1.操作:

  师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4个,第三排放3个,注意摆的时候,要一一对应地摆齐。

  2.学生合作探究:

  师:平均每排有多少个圆形磁铁?你是怎样想的?

  3.交流汇报

  a.移多补少:只要从8个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。

  b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。

  [设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。]

  4、教学例1

  (1)、出示情景图,收集数学信息

  师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?

  生:小明收集15个,小亮收集11个

  生:小红比小兰多收集2个

  ……

  师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?

  生:就是让我们求出平均数。

  师:你同意他的说法吗?你是怎样理解的?

  (2)利用情境图,处理数学信息

  a:移多补少

  师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?

  生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个

  师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)

  生:13就是14、12、11、15这组数的平均数

  b:先求和再平均分

  师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?

  生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。

  生:14+12+11+15=52(个) 52÷4=13(个)

  师:13是这组数的什么数?(平均数)

  生:13就是14、12、11、15这组数的平均数

  c:理解平均数是一个不“真实”的数。

  师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗?

  生:不是

  生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。

  师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子

  师:现在同学们来观察平均数13和原来这一组数,你发现了什么?

  生1:小红和小明收集的'瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。

  生2:平均数在最大的数和最小的数之间。

  生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”

  生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。”

  d:归纳“平均数”的含义

  师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。

  e:小结求平均数的方法,知道平均数在生活中的运用。

  师:通过刚才的学习你能说一说求平均数有几种方法?

  根据学生回答板书:

  1、移多补少

  2、先求和再平均分

  师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。

  师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。

  『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会“平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』

  三、巩固应用

  1、算一算

  在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?

  2、辨一辨

  (1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。

  (2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。

  3、想一想:

  星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?

  □会□不会□可能会□可能不会

  师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。

  [设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。]

  四、全课总结.

  这节课,你有什么收获?

  [设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]

  五、拓展延伸,深化提高

  1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

  [设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]

  反思:平均数是统计中的一个重要概念,对于三年级的学生来说它也是一个非常抽象的概念。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学平均数,注重引导学生在故事中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。这节课我注重了以下几个方面:

  一、创设情境,沟通数学与生活的联系

  通过故事引导学生展开交流、思考。让学生感受到数学就在我们身边,从而深刻认识到数学的价值与魅力。在学生的讨论中,感受平均数是实际生活的需要,产生学习“平均数”的需求。

  二、探究学习,理解平均数意义和归纳求平均数的方法

  分桃子活动从多方面向学生提供充分从事数学活动的机会,让每一位学生主动从事数学活动,让学生自己探索出求平均数的方法。一种是先合再分,一种是移多补少。由于生活经验和知识基础,学生中有一部分已经知道用移多补少的方法找出平均数;还有一部分数感较强的学生,能够根据提供的一组数据感觉出平均数大概是多少;而用总数除以份数得到平均数的计算,也不难,学生肯定会有这种思维。因此,在教学过程中,我让学生自主探索,找到求平均数的方法,再小组合作学习,互相将自己探索的方法交流,达到共识。学生虽然求出了平均数,但概念也是非常模糊的,平均数”的概念比较抽象,很多人对平均数的含义不理解。移多补少对理解平均数的意义很有帮助,让学生在移多补少中建立平均数的表象,通过学生移一移、说一说,教师直观板书,从感官上理解平均数的由来,理解平均数的意义

  三、练习有坡度,让不同层次的学生得到发展

  练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让不同层次的学生得到发展。第一个层次是巩固新知求平均数,通过先估计再验证的方法使学生感知平均数的区间,从中渗透估算的数学思想和方法;第二个层次是通过计算4个人的平均分而只给出3个数据,目的让学生进一步感受计算平均数时,总数要与份数相对应;第三个层次是课件设计通天河横截面图,让学生直观辨别平均数是一个虚拟数。

  四、拓展延伸,让数学回归生活

  课堂小结时,给教师表现打分及计算平均分再次强化了本节课的知识;体现了平均数在生活中的实际应用,又得到了这节课的真实信息的反馈;作业的布置是对课堂的拓展延伸,进一步激发学生继续探究生活中的平均数的兴趣。

  五、不足与遗憾之处

  一是在学生合作交流的细节上还要落到实处。教学中在小组合作、同桌讨论之前缺少足够的独立思考的时间,学生在小组合作中参与的程度还不完全均衡。这就需要我们教师在今后教学中要对小组合作给予必要的组织和引导,面向全体,关注个别差异,注重组际之间的评价,把合作学习的每一个细节落到实处,这样才能实现学生间的协调互助、共同发展;二是教师对课堂中的生成问题处理不够灵活。教学中我们应顺应学生的认知需求,因势利导,让我们的教学富有灵性;三是教育要以促进人的发展为本,本节课中缺少对学生润物细无声的人文感染,要加强数学与生活的紧密联系,注重对学生的人文思想教育。

四年级下册平均数教学设计2

  教学内容:

  数学书第90页例1、91页例2。

  学习目标:

  1、使学生理解平均数的意义,初步学会简单的平均数的方法。

  2、理解平均数在统计学上的意义。

  3、培养应用所学知识合理、灵活解决简单的实际问题。

  教学重难点:

  1、使学生理解平均数的意义,初步学会简单的平均数的方法。

  2、培养应用所学知识合理、灵活解决简单的实际问题。

  教学过程:

  一、游戏引入

  男生3人,女生4人,每人10秒拍球,那一组拍的总数多哪组就获胜。女生队拍的多。老师宣布女生队获胜。男生感到不公平,该怎么比公平?那么平均数是

  一个什么样的数,怎么求平均数?这就是我们这节课所要学习的内容。

  二、 探索新知,解决问题

  1、 学习例1

  泉水瓶,做环保小卫士,请同学们仔细观察统计图。(出示课件)

  自探提示:

  (1)从图中你可以获得哪些信息?(小红比小兰多1个,小明比小亮多2个)

  (2)从图中你能看出平均每人收集多少个吗?是怎样看出来的?(移多补少)

  (3)你会列式计算出平均每人收集多少个吗?必须先求出什么?请试着解答。(总个数)

  (5)你觉得怎样求平均数?(列式计算)

  思考:在例1中,我们求出平均每个人收集13个瓶子,是表示他们4人中某一个人实际收集13个瓶子吗?每个人实际收集的瓶子数和平均数13有什么关系?

  2、 练习:

  小明身高135厘米,河中平均水深110厘米,小明会遇到危险吗?

  3、 学习例2:观看两队的身高记录

  (1)先看欢乐队的身高记录

  列式计算,求欢乐队的平均身高;

  (2)观看开心队的身高记录

  列式计算,求开心队的'平均身高;

  (3)比较两队的平均身高;

  (4)总结:平均数能较好地反映一组数据的总体情况。

  4、 练习:(选择)

  (1)三(1)班学生植树,第一组种18棵,第二组种20棵,第三组种25棵。平均每组种几棵?

  A、20棵 B、21棵 C、19棵

  (2)玩具店卖玩具车,第一天卖54辆,第二天上午卖23辆,下午卖25辆。平均每天卖多少辆?正确列式是:

  A、(54+23+25)÷3 B、(54+23+25)÷2

  三、实践应用

  下图是一个平均水深是100厘米的水池,小明的身高120厘米,小明在里面游泳有危险吗? 天气越来越热了,同学们一定要注意安全,不要到池塘里去游泳。

  四、小结收获

  这节课你有什么收获?

  五、布置作业

  请完成数学书练习十一的内容。

  板 书:

  平 均 数

  小红 小兰 小亮 小明——移多补少

  ( 14 + 12 + 11 + 15 )÷4 = 13(个)

  ↓ ↓ ↓

  总 数 总人数 平均数

  好处:平均数能较好地反映一组数据的总体情况。

四年级下册平均数教学设计3

  教学内容:人教版四年级下第90—91页例1、例2及相关内容。

  教学目标:

  1、使学生理解平均数的含义,知道平均数的求法。

  2、了解平均数在统计学上的意义。

  3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

  教学重点:理解平均数的意义,掌握平均数的方法。

  教学难点:理解平均数的意义。

  教、学具准备:课件、题卡、磁扣等。

  一、 导入

  同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

  二、 讲授新知

  1、探究平均数的方法

  师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

  师:大家看,他们每人各运了几个球?

  师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

  生:男生成绩好。女生总数12,男生总数15。

  师:对,我们比较总数,可以看出男生队成绩更好。

  师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

  生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

  生:4.

  师:用4表示可以吗?

  生:可以。

  师:男生队用几表示呢?

  生:5.

  师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的'。想一想,为什么用这个4或5可以代表每组的水平?

  生:小组合作。

  师:哪个小组愿意派代表汇报一下?(只出示女生的)

  生:女生队2号最多,给1号2个,给3号1个。

  师:结果怎样呢?

  生:让他们变得同样多。

  师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

  师:大家听清楚了吗?谁愿意到黑板上摆一摆?

  生:移多补少演示。

  师:大家同意吗?

  师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。

  师:你们用移多补少的方法表示出男生队的平均成绩吗?

  生:到前面来演示。

  师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

  生:列算式。学生到黑板上演示。

  (4+5+6)÷3

  =15÷3

  =5(个)

  师:你是怎么想的?(写的同学说说自己的想法)

  生:用男生队运球的总数除以3,就是每人平均运5个球。

  师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

  师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

  师:你能用合并平分的方法,求出女生队的平均数吗?

  生:汇报

  师:现在我们来说一说哪一个队成绩更好呢?

  生:男生队

  师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

  2、平均数的作用

  师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

  生:公平,再观察一下,他们为什么不同意。

  不公平,人数不同。

  师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

  生:4.

  师:你们怎么这么快就知道了呢?

  师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

  师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

  师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

  生:12个。

  师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

  3、平均数的性质

  师:请大家观察女生队的成绩

  我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

  平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

  生:4比7少3个,比2多2个,比3多1个。

  师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

  师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

  生:不是

  师:平均数5和男生队每个人实际运球数比较一下。

  生:平均数5和2号选手实际运球数一样多。

  师:那么这个5和2号的成绩5表示的意义一样吗?

  生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

  师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

  习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

  师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

  师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

  生汇报:

  师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

  1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

  2:计算统计平均数的作用,在于衡量事物要均等。

  所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

  三、习题

  1、课件出示“小小”冷饮店习题。

  2、水深。

  四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

  板书设计

  平均数

  合并平分 移

四年级下册平均数教学设计4

  导学目标:

  1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。

  2.学会计算简单数据的平均数。

  3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。

  重点:

  学会求简单数据的平均数。

  难点:

  理解平均数的意义。

  教学资源:

  自制课件、彩笔及笔筒

  教学过程:

  一、创设情境,提出问题

  1、谈话:同学们,课间休息时玩什么?

  (丢沙包、踢毽子、跳皮筋、跳绳等)

  课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。

  男生和女生谁获胜了?怎样比较?(求总数)

  2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?

  你觉得男生成绩好还是女生成绩好?比什么?怎样比?

  a、比男、女生的总数(质疑不公平)

  b、套的最多的、最少的都是女生,不好比。

  c、比男生还是女生套的准?

  二、自主探索,解决问题

  1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?

  小组内说说自己的想法。

  各组代表向全班学生汇报

  本组的想法。引出平均数。即:分别求出男生、女生平均每人套中的个数。

  2、求男、女生平均每人套中的个数

  (1)学生演示移动条形统计图中方块,使4个男生套中的个数变得同样多。

  移动女生条形统计图中方块,使5个女生套中的个数变得同样多。

  动手操作移动彩笔。(说清移动方法及结果)

  质疑:移动有局限性,数大或者没图怎么移?(如:求平均身高)

  (2)通过计算求平均数:

  求男生平均每人套中的个数。(抽生讲解思路并板书)

  独立计算女生平均每人套中的个数。(抽生板书)

  求丝带的平均数。(p94页2题)

  求平均身高。

  小结:求平均数的`过程及注意事项。

  三、巩固练习,拓展应用。

  1、提问:学校篮球队员的平均身高是160厘米。李强是学校篮球队队员,他身高是155厘米,可能吗?学校篮球队可能有身高超过160的队员吗?

  (1)在小组内讨论。

  (2)指名回答,要求说出理由。

  2、河水平均深度110厘米,身高145厘米,下河游泳一定安全吗?

  (1)在小组内讨论。

  (2)指名回答,要求说出理由。

  揭示平均数的意义:平均数表示的是一组数据的平均水平,有些数可能比平均数大,有些数可能比平均数小,有些可能和平均数相等。

  四、实际应用:

  1、生活中哪些地方用到平均数?

  2、给本节课打分(提出对老师、同学的建议,进一步渗透平均数的应用意识。)

  五、课堂总结:今天学会了什么?有哪些收获与困惑?

  教学反思

  用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与困惑:

  收获一:情境的成功运用。课一开始,我以学生熟悉而又喜欢的运动会跳绳的录像引入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫,同时也为求平均数的方法(移多补少法)起到了迁移的作用。在例题教学中,我让学生观看了“套圈比赛”的录象,学生注意力特别集中,兴趣盎然,既而我抛出一个实质的问题:是男生套的准还是女生套的准?一石激起千层浪,学生们议论纷纷,有的认为男生组,有的认为女生组,学生各抒己见,各自发表了自己的意见?然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理。当学生感受到要比较谁套得更准一些必须先求出“男、女生平均每人投中的个数”后,我并没有急着让学生讨论或者讲解“平均每人套中个数”的含义,而是让学生用移一移,画一画的,或者用计算的方法求出平均数。在此,我把思考的权利交给学生,不交流的权利还给学生,让学生充分感受所学知识的价值。

  收获二:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材,如:第一题是对平均数的理解;第二题是对平均数的应用,第三题是对平均数的深化认识。这三道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。这样的教学实现了数学教育的多重价值,使各学科起到了有效的整合作用。

  但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!

四年级下册平均数教学设计5

  教学内容:

  人教版四年级下册90页例1、例2。

  教学目标:

  1.使学生理解平均数的含义,知道平均数的求法。

  2.了解平均数在统计学上的意义。

  3.学习解决生活中有关平均数的问题,增强应用数学知识解决问题的能力。

  教学重点:理解平均数的意义,掌握求平均数的方法。

  教学难点:理解平均数的意义。

  课前谈话:

  师:孩子们,我姓王,大家可以叫我----王老师,真有礼貌!你们愿意和老师交个朋友吗?(愿意)你叫什么名字?你现在有多高?(学生个别汇报)

  师:看来,同学们的身高有高有矮,谁能说说我们班同学大概有多高?是这么高吗?还是这么高?

  (学生疑惑时,老师故意找出班上较矮和较高的学生,欲以他们的身高作标准,由此展开争议)

  师:那你们认为我们班同学的身高大概与哪位同学差不多?猜测一下这位×同学身高大约是多少?这是我们班每个同学的身高吗?(不是)那是什么呢?

  师:孩子们,现在对平均身高有感觉了吗?带着这种感觉一起进入今天的学习。

  【设计意图:通过感受平均身高,了解平均身高的意义,让生在脑海中对“平均数”有一个表象。】

  一、情境导入,讲解例1

  1.联系生活,情景激趣

  为争创全国卫生城市,我校四年级同学自发组成环保小组,利用周末去收集饮料瓶。请看,这是其中一组收集的瓶子数量,老师把它绘制成了象形统计图。

  教师用多媒体课件出示例1主题图,引导学生仔细观察。

  2.发现信息,提出问题

  教师:从图中你知道了什么?

  学生汇报,教师引导。

  教师:根据这些信息,你能提出什么数学问题?

  学生:这个小组平均每人收集了多少个矿泉水瓶

  二、自主探索,解决问题

  1.教学例1,初步理解平均数的意义和求平均数的方法

  (1)小组合作,尝试解决问题。

  学生在独立思考的基础上,进行小组合作,预设学生会想到“移多补少”和“数据的总和÷份数”的方法。学生可以在教师提供的练习纸上画一画、移一移,直观地看出平均数,也可以动笔计算求出平均数。

  (2)汇报交流,理解求平均数的两种方法。

  教师:这个小组平均每人收集多少个?

  学生:13个。

  教师:大家都同意这个答案吗?13是怎么来的?

  ①“移多补少”的方法。

  结合学生口述,用课件演示“移多补少”的过程。

  教师:这种方法对吗?你能给这种方法起个名字吗?你们是怎样想到这个方法的?

  教师:同学们想到了用多的补给少的这个方法,使每个人的瓶子数量同样多,这种方法可以叫“移多补少”法。(板书:移多补少)这里平均每人收集了13个,这个“13”是他们真实收集到的矿泉水瓶吗?

  引导学生初步体会13不是每个人真正收集到的瓶数,而是4个人的整体水平。

  ②先合并再平均分的计算方法。

  教师:还有不一样的方法吗?

  结合学生口述,用多媒体课件演示“先合并再平均分”的过程。

  教师:怎样列式计算呢?

  学生:(14+12+11+15)÷4=13(个)

  教师:谁看懂这个方法了?能再说一说这个算式的每一部分是什么意思吗?

  教师:像这样先把每个人收集的瓶子数量合起来,再除以4,也能算出这个小队平均每人收集了13个。

  教师:谁再来说一说这种方法。

  (4)引入概念,揭示“平均数”这一课题。

  教师:13就是这4个数的平均数。这也是我们今天要研究的内容。(板书课题:平均数)

  师:那么,13是这四个同学实际收集的'瓶子数量吗?

  师:看来,平均数并不是真实存在的,它是一个虚拟的数。

  师:那平均数13和他们实际收集到的数量相比较,你又发现了什么?仔细观察这组数据:实际收集的数量最大的是( ),最小的是( )它们与平均数13相比,你又发现了什么?

  引导学生说出:平均数在最大值和最小值之间

  师:如果小亮只收集了7个,平均数会发生变化吗?变多还是变少?

  如果小亮收集了19个呢?

  小结:这样看来,平均数很敏感,平均数与每一个数据都有关,其中任何一个数据的变动都会引起平均数的变动

  【设计意图:通过观察,比较,进一步理解平均数的意义,在这一环节中,教师注重让学生自主探索、合作交流,尝试用不同的方法求平均数,充分经历知识的形成过程。无论是直观形象的操作演示,还是运用平均分来计算,都为学生理解平均数这一概念提供了感性支撑,使学生初步理解了平均数的意义,掌握了求平均数的基本方法。】

  2.教学例2,体会平均数的作用

  (1)承上启下,调动学生参与热情。

  在今天上课之前,你们在生活用平均数的机会多吗?实话实说,不多。那我们今天来用一用好嘛。请看大屏幕:今天老师想邀请你们来当回裁判,那么裁判需要什么样的素质?(公平公正)

  四(2)班的男女同学比赛踢毽子,男生队派出4人,女生派出4人,如果你是裁判,你认为哪个队赢了?哪个队的成绩好呢?仔细看数据。

  引导学生体会,在人数相同的情况下,我们可以用求总数的方法比较输赢。

  教师:还有其他的方法吗?

  学生:也可以比较两组队员踢毽个数的平均数。

  教师:哪个队求平均数比较简单,你是用什么方法求的?

  引导学生用平均数的意义来说明道理,求几个数据的平均数,就相当于把这些数据的总和平均分成这么多份,每份都同样多,平均数可以代表这组数据的总体水平。

  (4)巧设矛盾,比较人数不同的两个队成绩。

  教师:看来,女生队暂时领先。如果男生队再加一个人,谁会是最后的赢家呢?请各位裁判员独立思考后给出最终的裁定?并说出你是怎么想的?

  预设学生会进行争论,有的认为看总数,第一组应该领先,有的认为在人数不同的时候,用总量来比不公平,只能用平均数来比较。

  教师:为什么不公平?谁再来说一说?

  引导学生通过对不公平的深入思考,体会平均数是解决这个问题的好办法。

  引导学生拿着学习单,说计算的方法。

  师:在人数不等的情况下,是谁帮我们解决了这个问题?是的,求平均数。通过统计图更能清晰地说明你们的观点。看(停顿)通过移多补少,一眼就能发现哪队的整体水平高呀?(女生)所以,平均数能反应一组数据的整体水平。

  【设计意图:通过自主探究-全班交流-互相质疑-争辩,使学生深刻的理解平均数的意义】

  三、联系实际,拓展应用

  1.练习一:三个铅笔筒,装了铅笔,分别6支、7支、5支,平均每个笔筒装了多少支?

  师:看看每个笔筒里有多少枝?

  提问:用了什么方法?

  移多补少

  呈现条形统计图,让学生说说怎么移多补少?

  指出:移多补少。

  2.练习二:小丽有这样的三条丝带,这三条丝带的平均长度是多少?

  平均数是18cm

  追问:用什么方法?

  指出:测量后获得数据,用求和平分法。

  在获得数据的基础上,移多不少。

  3.练习三:冬冬来到一个池塘边,看到平均水深110cm,冬冬心想我身高是140cm,下水游泳不会有危险,对吗?

  引导学生运用平均数的知识来解答:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,超过他的身高。所以,冬冬下水游泳可能会有危险。

  师:平均数反应的是整体水平,它会掩盖掉很多的信息,万一这条小河是这样的话,你觉得东东有危险吗?

  师:所以呀,孩子们,天气越来越热,孩子们一定不能随便下水游泳,要有防溺水的安全意识,时刻注意安全。

  4.练习四:中国男性平均寿命74岁,女性平均寿命77岁。

  问题一:一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢?

  引导学生运用平均数的知识来解答:平均寿命74岁反映的只是中国男性寿命的整体水平,这些人中,一定会有人超过平均寿命的。

  问题2:如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?

  引导学生运用平均数的知识来解答:不一定!虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

  师:要想长寿,就要注意健康。健康让我们更有幸福感和安全感,要想有健康的身体,就要养成体育锻炼好习惯和良好的生活方式。

  二、总结

  这节课你收获了哪些知识?又学到了哪些方法?

  我们认识了一个新的统计量平均数,什么是平均数呀?平均数就是将原来几个不相同的数变得同样多的数,这个同样多的数就是平均数。通过两种方法研究平均数,分别是求和平分、移多补少方法。我们在探究的过程理解平均数的特性:平均数反映了一组数据的整体水平,一个数据的波动会影响到平均数,平均数在最大值和最小值之间。数学源于生活,我们还认识到平均数在生活中的运用。

  师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

四年级下册平均数教学设计6

  教学内容:教科书例2、例3及做一做,练习七第1题。

  一、素质教育目标

  (一)、知识教学点

  1、使学生理解平均数的含义,初步掌握求平均数的方法。

  2、使学生能根据简单的统计表求平均数。

  (二)、能力训练点

  培养学生分析、综合的能力和操作能力。

  (三)德育渗透点

  向学生渗透事物间联系的思想和统计思想。

  (四)美育渗透点

  使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

  二、学法引导

  1、通过演示使学生初步感知平均分。

  2、指导学生试算,掌握平均分的计算方法。

  三、重点、难点

  1、教学重点:。明确求平均数的含义;掌握求平均数的方法。

  2.教学难点:区分平均分与求平均数这两个概念的不同含义

  四、教具学具准备

  例2水杯挂图、小黑板、卡片若干、长方体积木16块。

  五、教学步骤

  (一)、铺垫孕伏

  1、口算:(用卡片出示)

  (38+52)3(7620)7

  说出205表示的意义。

  2、一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

  (通过此题,使学生复习平均分的意义,使学生明确平均分的结果是每杯水的实际水面高度都是4厘米。)

  (二)、探究新知

  1、引入新课:

  以前,我们学习过上题这样的把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题。在现实生活中,我们还常听说这样的说法,例如:火车提速后,平均速度达到每小时120千米,我们班的语文平均成绩是91分,某足球队队员的平均年龄是26岁,平均身高是182厘米等等,像这些平均速度、平均成绩、平均身高、平均年龄等,都是平均数。今天我们就来共同研究一下求平均数问题。(板书课题:求平均数)

  平均数怎样求呢?它与以前学习的平均分有什么相同点和不同点呢?

  请同学们在学习过程中一定要仔细体会。

  2、教学例2:

  (1)、出示例2:

  用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米。这4个杯子水面的平均高度是多少?

  (2)、学生读题,找出已知条件和所求问题。组织讨论:你怎样理解水面的平均高度?

  (3)、学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,假设水面高度同样高时水面的高度值。

  (4)、教师出示第27页水杯图的上半部,问:怎样做才能使这4杯水的水面高度同样高,而得到这4杯水的水面平均高度值呢?

  (5)、学生操作。

  请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等。

  (6)、学生汇报操作结果,一般出现两种方法。

  第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用164:4厘米,得出每杯水水面的'平均高度是4厘米。

  第二种:直接移多补少。从6厘米中取2厘米放人2厘米杯中,从5厘米杯中取1厘米放人3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米。这说明原来4杯水水面的平均高度是4厘米。

  (7)、教师出示第27页水杯挂图下部分(标有平均高度虚线)。

  教师:通过同学们刚才的操作,我们得到了这4杯水水面的平均高度是4厘米。但这里有一个问题,我们刚才通过操作,使水杯的水面实际高度发生了变化,这4杯水的水面高度才相等了。也就是说,平均高度得到了,而原来4杯水水面高度却发生了变化。而现实生活中,很多求平均数的情况是不允许原值的。例如:高个身高180厘米,矮个身高140厘米,两人的平均身高160厘米。这个160厘米代表的是两个身高的平均水平,并不是把高个的身体一部分接在矮个身体上,使两人身高相等。也就是说,求平均数并不要;变原来的实际值。由此可见,通过直接操作的方法来求平均数,在很多情况下,是行不通的。如果我们不通过操作,直接通过计算,能不能求出这4杯水:的平均高度呢?怎样计算方便呢?

  通过引导学生回答,进一步明确:应先相加求出高度总和,再用高度和杯子数,得到平均高度。

  (引导学生操作,使学生感知平均数。从直观到抽象,帮助建立平均数概念。)

  (8)、指导学生列式计算

  (6+3+5+2)4

  =164

  =4(厘米)

  答:这4个杯子水面的平均高度是4厘米。

【四年级下册平均数教学设计】相关文章:

平均数教学设计03-08

《平均数》教学设计04-18

《平均数》教学设计04-19

《平均数》的教学设计06-29

[优秀]平均数教学设计12-06

人教版平均数教学设计03-11

平均数优秀教学设计02-27

平均数教学设计(必备)10-28

《统计》平均数教学设计06-01