倍数与因数教学设计

时间:2024-07-26 16:13:26 教学资源 投诉 投稿

倍数与因数教学设计

  作为一位无私奉献的人民教师,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么什么样的教学设计才是好的呢?以下是小编收集整理的倍数与因数教学设计,欢迎大家分享。

倍数与因数教学设计

倍数与因数教学设计1

  教学内容:

  苏教版九年义务教育六年制小学数学教科书第八册第70-72页。

  设计思路 :

  这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  教学目标:

  1、通过用动手操作和写不同的乘法算式,认识倍数和因数;依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  2、在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。

  教学重点:

  理解因数和倍数的含义。

  教学难点:

  自主探索并总结找出一个数的倍数和因数的方法。

  教学过程

  一、揭题

  谈话:在生活中,我们常常用形影不离来表示两个人的关系非常亲密,在我们的数学王国里也有不少数关系密切,今天我们就来认识一对形影不离的好朋友:倍数和因数。

  二、认识因数和倍数

  1、 观看大屏幕,用12个正方形摆成一个长方形,你们会拼吗?

  每排摆几个,摆几排?用乘法算式表示出来。分成四人小组,用正方形摆一摆,

  哪个小组汇报一下。

  还有不同的摆法吗? 12个正方形可以拼成3种不同的长方形,列出了3个乘法算式。

  2、 同学们,不要以为这三个算式很简单很普通哦,今天我们要学习的内容可都藏在里面呢。(看课件)

  (在数学中,因为4×3=12,所以4是12的因数,3也是12的因数,12是4的倍数,12也是3的倍数。)(暂停)

  谁能照着老师的样子说一说。(请2-3个学生说一说)

  谁能说说下面两个算式里,什么数是什么数的倍数,什么数是什么数的因数吗? (1×12=12、2×6=12)

  我们在说1×12=12的时候,你发现了什么?(12既是12的因数,又是12的倍数)

  3、友情提醒:(看课件)

  为了方便,我们研究因数倍数时一般指不是0的自然数。

  二、探求因数和倍数

  1、学生尝试找出18的所有因数。

  (1) 那我们来看18这个数,它有哪些因数呢?(学生说)你是怎么想的?

  学生独立完成,交流想法

  核对答案。

  (2)教学“试一试”

  15的因数有:

  16的因数有:

  (3)观察18、15和16的所有因数,你有什么发现吗?(小结:一个数最小的因数是(1),最大的是(它本身),一个数因数的个数是(有限的)。

  2、学习找一个数的`倍数。

  刚才我们用一些好的方法找出了一个数的因数,那你们有信心又快又准确的找出一个数的倍数吗?比一比谁找的快找的多,看谁先把它找完。

  请找出3的倍数。(学生独立完成)

  汇报结果。

  你是怎么找的?怎样找一个数的倍数比较方便?找倍数时一般按照从小到大的顺序去找。一个数的倍数的个数是无限的。我们一般写出5、6个,后面加省略号。

  (2)猜一猜:一个数的倍数又会有哪些特点呢? 把你们的猜想在小组里先交流交流。(请2-3个学生说说)

  光凭一题不能肯定我们的猜测就是正确的。我们再做几题验证一下。

  试一试:找出2、5的倍数。

  总结:一个数最小的倍数是它本身,没有最大的。一个数的倍数的个数是无限的。

  找出40以内6的倍数。

  三、应用倍数和因数

  通过刚才的学习我们掌握了找一个数的因数和倍数的方法,并发现了因数和倍数的特点。下面我们就用这些知识去解决一些生活中的实际问题。

  1、谁是谁非。(正确的在括号里画“√”,错误的在括号里画“×”。)

  (1)4×5=20,4是因数,20是倍数。

  (2)18最大的因数和最小的倍数,都是它本身。

  (3)1的因数只有一个。

  (4)8所有的因数是2、4、8。

  2、想想做做

  根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

  11×4=44 12×5=60 9×8=72

  3、游戏(找朋友)

  (1)找8的因数朋友;找24的因数朋友找;15的因数朋友

  (2)5的倍数;9的倍数;1的倍数

  3、猜年龄

  刚才同学们学习的真不错,我们放松一下。老师知道我们四年级的同学今年大多数应该是13岁了,那老师今年多少岁你们想知道吗?

  我今年的年龄恰好是13的倍数,你能猜到老师的年龄吗?

  4、介绍完美数(课件出示)

  四、全课总结

  五、挑战自我

  1、想一想自然数A最大的因数是几?最小的因数呢?最小的倍数是几?

  2、100以内谁的因数最多?

倍数与因数教学设计2

  教学内容:因数与倍数(P12-13例1及P15题1、2)

  教学目标:

  1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。

  2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

  3、培养学生的合作意识、探索意识以及热爱数学学习的情感。

  教学重点:理解因数的意义

  教学难点:能熟练地找一个数的因数。

  教具准备:多媒体课件

  教学过程:

  一、引入新课:

  1、课件出示主题图,让学生各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?

  (指名生说一说)

  4、你能不能写一个算式来考考同桌?学生写算式。

  5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)

  齐读教材第12的注意。

  二、自学预设:

  1、仔细看例一,什么叫因数和倍数?像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

  2、怎样找因数?例如18,36的因数是什么?

  3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)

  尝试练习

  试着完成P13的做一做练习

  三、认识因数与倍数,展示交流

  (一)找因数:

  1、出示例1:18的因数有哪几个?

  师:从12的因数可以看出:一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  学生尝试完成汇报:(18的因数有: 1,2,3,6,9,18)

  2、用这样的'方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示

  5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二).我的质疑

  1.谁能举一个算式例子,并说说谁是谁的因数?

  2.讨论:0×3 0×10 0÷3 0÷10

  提问:通过刚才的计算,你有什么发现?

  3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

  四、反馈检测

  1.下面每一组数中,谁是谁得因数?

  16和2 4和24 72和8 20和5

  2.下面得说法对吗?说出理由。

  (1)48是6的倍数

  (2)在13÷4=3……1中,13是4的倍数

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  3、完成P15第2题

  学生自己独立完成,讲评时让学生说一说,是怎么想的?

  五、课堂小结:

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  板书设计: 因数和倍数

  18的因数有: 1,2,3,6,9,18

  一个数的因数::最小的是1,最大的是它本身。

倍数与因数教学设计3

  教学内容:

  人教版小学数学五年级下册第13~16页。

  教学目标:

  1、学生掌握找一个数的因数,倍数的方法;

  2、学生能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养学生的观察能力。

  教学重点:

  理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。

  教学难点:

  自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。

  教学具准备:

  学号牌数字卡片(也可让学生按要求自己准备)。

  教法学法:

  谈话法、比较法、归纳法。

  快乐学习、大胆言问、不怕出错!

  课前安排学号:1~40号

  课前故事:

  说明道理:

  学习最重要的是快乐,要掌握学习的方法。

  教学过程:

  复习

  1、4×0.5=2,所以4和0.5都是2的因数,2是4和0.5的倍数。这句话对吗?

  2、我们在因数与倍数的学习中,只讨论什么数?

  3、8÷2=4,所以8是倍数,4是因数。这句话对吗?

  今天,我和大家一道来继续共同探讨“因数与倍数”

  合作交流、共探新知

  探究找一个数的因数的方法(谈话法、比较法、归纳法)

  请认为自己是18的`因数的同学带着号码牌上台来。

  a、学生上台――找对子,击掌―――。完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?

  b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?为了让人家看得更明白,我们从小到大排一下,好不好?

  学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

  c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?

  d、介绍写一个数因数的方法

  可以用一串数字表示;也可以用集合圈的方法表示。

  说一说:

  18的因数共有几个?

  它最小的因数是几?

  最大的因数是几?

  做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

  a、30的因数有哪些,你是怎么想的?

  b、36的因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?

  c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?

  d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

  学生总结:

  板书:

  一个数最小的因数是1;

  最大的因数是它本身;

  因数的个数是有限的。

  轻松一下:

  我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

  b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

  因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

  过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

  a、2的倍数有哪些?你是怎么想的?从1开始做手势:1x2=2,2x2=4,2x3=6,一倍一倍地往上递加。

  发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?

  b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

  c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

  (到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

  学生总结:

  板书:

  一个数最小的倍数是它本身;

  没有最大的倍数;

  倍数的个数是无限的。

  (哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)

  c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。

  指着板书中的18的因数与2的倍数提问:

  你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)

  学生完成后表扬:哇,好厉害!

  三、深化练习,巩固新知

  1、做练习二的第3题

  在题中出示的数字里分别找出8的倍数和9的倍数

  注意“公倍数”概念的初步渗透。

  做练习二的第6题

  四、通过这堂课的学习,你有什么收获?

  五、布置作业:

  六、结束全课:

  请学号是2的倍数的同学起立,你们先离场,

  不是2的倍数的同学后离场。

  七、板书设计:

  18=1 ×18

  18=2 × 9

  18=3 × 6

  有序 不重复不遗漏

  18的因数有:1、2、3、6、9、18。

  因 数 和 倍 数

  一个数的最小因数是1,最大因数是它本身。

  因数的个数是有限的。

  2的倍数

  2,4,6,……

  一个数的最小倍数是它本身,没有最大倍数。

  倍数的个数是无限的。

倍数与因数教学设计4

  教学过程:

  一、创设情境,引入新课

  师:人与人之间存在着许多种关系,你们和你们的妈妈之间是什么关系……?

  生、母子、母女关系。

  师:我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  二、认识因数与倍数

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘法算式。

  根据学生的汇报板书:

  1×12=12 2×6=12 3×4=12

  12÷1=12 12÷2=6 12÷3=4

  师:在这3组乘算式中,都有什么共同点?

  生:第①组每个式子都有1、12这两个数。

  生:第②组每个式子都有2、6、12这三个数。

  生:第③组每个式子都有3、4、12这三个数。

  师:(指着第②组)像这样的乘式子中的三个数之间的关系还有一种说法,你们想知道吗?请看大屏幕

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

  生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

  师:可以说12是12的因数吗?

  生:我认为可以,12×1=12,1和12都是12的因数。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  师出示:12÷2=5……2。问:12是2的倍数吗?为什么?

  生:我认为不是,因为12除以2有余数。

  师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

  生:2×4=8,2和4是8的因数,8是2和4的倍数。

  生:40÷2=20,40是2和20的倍数,2和20是40的因数。

  师出示:0×3 0×10

  0÷3 0÷10

  通过刚才的计算,你有什么发现?

  生:我发现0和任何数相乘,都等于0。

  生:0除以任何一个数都等于0。

  生:我补充,0不能作为除数。

  师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

  生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

  师:这个问题提得好!谁能回答他的问题?

  生:我觉得好像不一样,但不知道为什么?

  生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

  师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能混哦!

  三、师生交流、合作探究:

  1。出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数不止一个,那么我们一起找找看18的因数有哪些?

  学生尝试完成并交流汇报,说说你是怎么找的?(18的因数有:1,2,3,6,9,18)

  我们在写的时候怎样写才能做到不遗漏、不重复?。

  (生:用乘法一对一对找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)

  5。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?(从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。)

  四、“动脑筋出教室”游戏课件

  五、课堂练习

  1、请你来做小法官

  (1)4×9=36,所以36是倍数,9是因数( )

  (2)48是6的倍数。 ( )

  (3)在13÷4=31中,13是4的倍数。 ( )

  (4)6是36的`因数。 ( )

  (5)在4x0。5=2中,4和0。5是2的因数。 ( )

  2、细心填一填

  (1)、1的因数是( )

  (2)、一个数的最大因数是24这个数是()它的最小的因数是()。

  (3)、自然数32有()个因数,它们是( )。

  (4)、16的因数有( )

  (5)、19的因数只有( )和( )。

  3、我最聪明,我来回答

  (1)、27的因数有哪些?

  (2)、27是哪些数的倍数?

  六、课时小结:

  本节课大家学习到什么知识,还有什么不明白的地方吗?有什么疑问请提出来我们共同来解决。

  七、板书设计

  因数和倍数

  1×12=12 12÷1=12

  2×6=12 12÷2=6

  3×4=12 12÷3=4

  因为:a×b=c,(a,b,c都是不为0的整数)

  所以:a,b都是c的因数,c是a,b的倍数

  教学内容:

  《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

  教学目标:

  1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。

  3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:

  理解因数和倍数的含义。

  教学难点:

  能准确、全面的求一个数的因数。

  教学反思:

  教学《因数和倍数》,这是一个非常枯燥的课题,但我巧妙地运用生活中人与人之间的关系,自然引入到数与数之间关系。为了让学生理解因数和倍数的含意,教学过程中,我立足体现一个“实”字,充分应用多媒体的优点,学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。

  在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都在愉快中学会了这节课的知识。

倍数与因数教学设计5

  教材分析

  “底和高”是在认识三角形、平行四边形、梯形之后进行的教学内容,以此来进一步认识三角形、平行四边形和梯形的特征,也为后续学习图形的面积计算打下基础。本课时内容以直角以及垂直为知识基础,以三角形、平行四边形和梯形的认识为认知背景,教材利用一块平行四边形的木板做成一张尽可能大的长方形桌面作为认知情境,展开自主活动,让学生主动积累高的表象,并形成高的概念。值得注意的是:本课时认识的高主要指图形内的高,而对于图形外的高不作要求

  教学目标

  1.通过动手把一块平行四边形木板做成一长尽可能大的长方形桌面等相关活动,找到高这条特殊线段,体验高的基本特征;

  2.能判断、画出、测量三角形、平行四边形、梯形的高;

  3.在方格纸上根据图形的高和底的数据画符合条件的.图形。

  教学重点:

  判断、画出、测量三角形、平行四边形、梯形的高

  教学难点:

  在画一个图形高的过程中对高的概念的运用

  教学准备

  (平行四边形、三角形、梯形)卡片、剪刀、三角板

  教学过程

  (一)谈话导入

  1、教师:请同学们说说你们家的餐桌是什么形状的?还见过什么形状的餐桌?

  学生:圆形、椭圆形、长方形、正方形……

  2、教师:说得很好!老师就特别喜欢方形的餐桌,而且老师有个习惯,自己能做到的事情就尽量自己去做。老师家里有一块平行四边形的木板,可是太大了,搬到课堂上比较麻烦,但老师带来了与它形状一样的图形(出示平行四边形),老师也为每位同学准备了一张,老师想用这块木板做一张尽可能大的长方形桌面,该从哪锯呢?同学们帮帮老师,行吗?那我们就动手做一做。

  板书课题:动手做

  (设计意图:从学生的学生活经验出发,调动学生的积极性,激发学生乐于助人的情操,营造宽松、自由的空间,使学生在积极主动参与探究活动中去寻求正确的答案,把学习数学的主动权交给学生

  3、学生制作,教师巡视指导。

  (设计意图:学生在动手实践中探索不同的制作方法,在小组中展示、交流、学习,留给学生充分的思考及表现自我的时间和空间)。

  4、教师:同学们好聪明!想出了很多种方法做出了尽可能大的长方形,老师会选择其中的一种方法。谢谢你们帮了老师的忙!

  (二)认识“高”

  1、出示平行四边形。

  (1)请同学们想一想,刚才剪的过程中你是怎样想的?谁来说说你的理由。(贴平行四边形)

  (2)学生回答。(引导学生抓住对边之间的线段、垂直等关键词)

  (3)教师小结:其实刚才同学们都是沿着平行四边形其中的一条高剪的,那怎样概括平行四边形的高呢,请大家在小组里互相说一说。

  (4)教师收集各小组的信息、意见,引出平行四边形的高的概念。

  教师:同学们同意这样的小结吗?

  学生:同意。

  2、出示三角形

  (1)教师:这是什么图形?请同学们对比平行四边形,看了这个三角形你想说点什么?请大家在小组里说一说,什么是三角形的高?

  (2)各小组汇报,教师收集信息,出示三角形的高的概念。

  (设计意图:培养学生与人合作、交流的能力,让学生经历数学知识的形成过程,培养学生学习数学的兴趣。)

  (3)尝试练习。

  ①教师:同学们想不想自己动手画一画三角形的高?

  ②学生试画,教师巡视指导。

  教师:同学们画的时候发现什么问题?

  学生:我用直尺画很难画垂直……

  ③师生交流得出:画各种图形的高最好用三角板画 ,画出的高更精确。

  ④师生共议用三角板画图形的高的最佳方法。

  3、出示梯形

  (1)教师:看到这个图形,你想提出什么数学问题?

  (引导学生说出梯形有几组平行的对边,它的高是怎样得到的。)

  (2)师生共同小结梯形的高的概念。

  4、教师:从三种图形的高的概念中你发现了什么?和你周围的同学说一说。

  (引导学生观察、说出它们的高都是垂直线段。)

  (三)练习巩固

  1、课本21页试一试第1题。

  学生依次找出各个图形中的高是哪条线段,并在图中标出来,完成后集体订正。

  2、课本21页练一练第1、2题

  让学生任选一个图形画出相对边的高。完成后要求小组内互评,说说对方所画图形的高的意见。(通过练习使学生体会到边和高的对应关系)

  3、课本21页练一练第3题

  动手量一量,你发现了什么?

  让学生在小组内测量三个同高但形状不同的三角形的高,说说他们的发现。(设计意图:充分发挥小组合作学习的优势,将发现的问题在小组内讨论,这样不仅让学生掌握了解决问题的策略,也培养了学生的合作精神。)

  (四)总结反思

  这节课大家有什么收获?有什么问题要向老师提出的吗?

  (五)作业

  课本22页练一练第4题

倍数与因数教学设计6

  一、本元单知识框架

  二、本单元学习内容的前后联系

  三、与本单元相关知识的学习情况分析

  这届学生,我是从五年级开始任教的。要是说对他们十分了解,自然是不太可能的,毕竟我们相处的时间是相对较短的。虽然如此,我对他们还是有一个学期的教学了解,多少能说出点关于对他们的学习情况,不论准确与否。

  根据我在上学期的教学零散了解,学生在整数四则运算方面没有多大的问题,主要是一些计算的准确率还没有达到一定目标,有些看似简单的计算如18×2=32,不知是出于什么原因,学生就是算错。当然,计算错,不一定就说明学生不会计算,有可能又是一个“一不小心!”。尽管分析是如此,事实存在的一些非本质性计算问题,多少会影响现在的这个单元的学习的。

  为了使学生能顺利学完并努力做到学好这个单元的知识,一方面加强要加强克服前阶段关于学习上存在的一些不足;另一方面要扎扎实实地学好这个单元的知识,为今后学习与之相关内容打下不敢说是牢固、但可说是踏实的基础。

  四、本单元教学目标

  1.理解因数、倍数、质数、合数这些数的概念,能用概念进行相关语句的判断并学会求这些数的方法

  2.经过自主探索,掌握2、3、5的倍数的特征,能用特征进行相关语句的判断

  3.通过本单元学习,进一步培养学生的'数学抽象能力

  五、本单元教学重点、难点

  教学重点:学生对因数、倍数、质数、合数等一些抽象概念的理解以及2、3、5的倍数的特征探索过程

  教学难点:学生对因数、倍数、质数、合数等一些抽象概念的理解

  六、本单元评价要点

  1.能否理解因数、倍数、质数、合数这些概念、是否会用他们进行一些简单的判断

  2.有没有掌握2、3、5倍数的特征,是否能根据三个数的特征解决一些实际问题

  3.观察学习数学热情是否得到增强!

  七、各小节教学目标及课时安排

  本单元计划课时数:11节

  教学内容教学目标计划课时授课日期

  因数和倍数的意义1.理解因数和倍数的意义,知道因数可数、倍数无法数、分清一组因数中最大是什么?、若干个最小倍数中最小是什么?

  2.掌握如何求一个数的因数和倍数方法并能做到熟练、完整,掌握有序的表达形式和常见的几种方式。如:一一列举、集合圈、线段图等。

  3节课

  2、3、5的倍数的特征1.通过自我探究,掌握2、3、5的倍数特征

  2.能用三个数的特征解决实际问题3节课

  质数、合数和11.理解并掌握质数、合数和1的概念,掌握他们之间区别。熟练判断出100以内的质数

  2.知道两个质数相乘的积是合数。反之,合数也可以分解两个或两个以上的质数。掌握一般分解方法以及横竖式的表达形式

  。2节课

  单元测试及分析留待教学测试后填写

  3节课

  合计15节课

  八、各课时教学设计

  第一节《因数和倍数意义》教学设计

  (课标人教实验教科书12---16页的学习内容)

  一、教学目标

  1.理解因数和倍数的意义,分清现在所学因数与以往乘法学习中因数的区别;

  2.通过不完全列举一个数的因数和倍数,让学生初步感受因数是可数的,自然得出因数的个数是有限的;而倍数是无法写完全,也就是说倍数的个数是无限的。是否存在最大和最小的问题。

  3.初步学会求一个数的因数和倍数方法。

  4.经历学习后,使学生初步感受原来学习的看似简单的整数乘法居然有如此大的深藏奥秘,激发学生进一步想学习它的热情!

  二、教学重点、难点

  1.教学重点:对因数和倍数意义的理解和运用性判断。

  2.教学难点:完整地表达数之间的因数和倍数关系

  三、预计教学时间:1节

  四、教学活动

  (一)基础训练

  【口算】2×6=1×18=2×15=()×()=24()×()=30

  3×4=2×9=1×30=()×()=24()×()=30

  1×12=3×6=5×6=()×()=24()×()=30

  3×10=()×()=24()×()=30

  【解答题】请你用一句话小结上面四组口算题(根据自己的学生说的)

  (二)新知学习

  【典型例题】

  1.请你说说下面两组计算,有什么相同和什么不同?(引入因数和倍数的前提学习条件)

倍数与因数教学设计7

  教学内容:义务教育课标实验教科书青岛版数学三年级下册P109——P110。

  教学目标:

  知识与技能:使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数相互依存的关系。

  过程与方法:使学生依据因数和倍数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。

  情感与态度:使学生在认识因数和倍数以及找一个数的因数和倍数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

  教学重点:理解因数和倍数的含义。

  教学难点:探索并掌握找一个数的因数和倍数的方法。

  教学过程:

  一、认识因数、倍数

  1、操作:用这12个正方形拼成一个长方形,每排摆几个,摆了几排,摆完后在练习本上写出乘法算式。

  汇报:你是怎么摆?算式是什么?

  指名说,师板书:1×12=12 2×6=12 3×4=12

  2、学习“因数、倍数”的概念

  师:刚才通过摆不同的长方形,我们得到了3道不同的乘法算式,别小看这3个算式,其实在这里面有许多数学奥秘。今天我们就来研究数学的新奥秘。

  师指3×4=12 说:因为3×4=12,所以我们就说3是12的因数(板书:因数),4是12的因数;12是3的倍数(板书:倍数);12是4的倍数。

  小结:是呀,我们不能直接说谁是因数,谁是倍数,而要清楚的表达出来谁是谁的因数,谁是谁的倍数。看来,因数和倍数是相互依存的(板书:和)。为了方便,在研究因数和倍数时,一般不讨论0。

  二、探索找一个数的因数的方法

  1、师:看黑板上的3个算式,你能找到12的所有的因数吗?(学生齐说。)

  问:如果没有算式,你能找出24所有的因数吗?先想想怎样找?然后写在练习本上。

  学生写一写,师巡视。

  汇报展示:(2人)

  问:你是怎么找的?(学生说方法)

  评价:他找的怎么样?(学生评一评)

  师讲解:想知道老师是怎么找的吗?(师边讲解边一对一对的板书24的因数)24的因数有:1,2,3,4,6,8,12,24

  小结:其实老师就是按从小到大的顺序一对一对找的,这样就能做到既不重复又不遗漏了。看来,有序的思考问题对我们的帮助确实很大。

  2、练习

  师:用这种方法写出18的因数。

  汇报:你找的18的因数都有哪些?(指名说,师板书)

  3、发现规律

  问:仔细观察这几个数的因数,你能发现什么规律?

  小结:一个数的因数最小的.是1,最大的是它本身。

  三、探索找一个数的倍数的方法

  1、方法

  学生找3的倍数,写在练习本上。

  汇报:指名说,师写在黑板上。(3的倍数有:3,6,9,12,15……)

  问:你能说的完吗?写不完怎么办?(用省略号)

  你是怎么找的?

  评一评:他的方法怎么样?

  问:还有别的方法吗?

  问:怎么找一个数的倍数?

  指名说。

  师:按从小到大的顺序,用3依次去乘1、2、3、4……,乘得的积就是3的倍数。

  2、练习

  找出5的倍数,写在练习本上。

  指名说,师板书,问:你是用什么方法找的5的倍数?

  3、发现规律

  问:观察一下,你发现一个数的倍数有什么特点?

  师小结:一个数的倍数的个数是无限的,最小的是它本身,没有最大的。

  问:一个数的倍数个数是无限的,一个数的因数的个数呢?(有限)

  (课件出示)

  四、巩固练习

  1、写一写:6的因数、9的因数、50以内7的倍数。

  集体订正。

  2、选一选

  8的倍数有哪些?48的因数又有哪些?

  学生填一填,集体订正。

  3、数学小知识:完美数。

  师:6的因数有(1,2,3,6),把前三个因数相加,你会发现什么?(1+2+3=6)

倍数与因数教学设计8

  教学内容:

  苏教版小学数学四年级(下册)第70-72页。

  教学目标:

  1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。

  2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

  3、增强学生学习数学的兴趣,感受到成功的快乐。

  教学重点:

  理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。

  教学难点:

  理解倍数和因数的含义及倍数和因数的相互依存关系。

  教学准备:

  学生:每人准备12个同样大小的正方形。教师:课件

  教学过程:

  一、认识倍数和因数

  1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。

  2分组操作活动,师巡视指导。

  3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。

  4、教学“倍数”和“因数”的概念。

  (1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。

  (2)齐读这三句话,板书课题:倍数和因数

  (3)指名看式子说。

  (4)请学生根据6×2=12和12×1=12两道算式,照样子说

  一说哪个数是哪个数的倍数?哪个数是哪个数的因数?

  追问:如果说12是倍数,3是因数,可以吗?为什么?

  明确:倍数和因数都是指两个数之间的关系,是相互依存的。

  教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9…….在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)

  (5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,

  三、探索找倍数和因数的方法

  1、探索找一个数的倍数的方法

  (1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。

  (2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:

  3×1=(3)3×2=(6)……

  追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?

  根据学生的回答课件演示:3的倍数有3、6、9、12、15……

  (3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。

  (4)一个数的倍数的特点。

  提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。

  提问:现在你能很快说出6的最小倍数是多少吗?10呢?

  2、探索找一个数的因数的方法

  (1)提出问题:什么样的数是36的.因数?

  学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。

  板书()×()=36

  (2)提问:你能找出36的所有因数吗?启发:要做到不重复,不遗漏,怎样才能有条理地找出36的所有因数?

  学生试着在练习本上列式找出。

  (3)学生汇报交流,根据学生的回答课件演示。

  (4)进一步启发:我们知道除法是乘法的逆运算,根据除法算式,也可以找一个数的因数。。根据36÷1=36可以找到1和36……

  请同学们看书71页,完成书上的填空。

  (5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。

  学生汇报,说说你是怎样找的。

  (6)观察发现

  提问:观察上面的例子,你发现一个数的因数有什么特点?

  小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。

  提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?

  四、巩固练习

  1、“想想做做”第2题。

  组织学生读题,理解题意。表中每栏的应付元数各是怎样算出来的?他们都是4的什么数?你还能说出4的哪些倍数?能把4的倍数全部说完吗?

  2、“想想做做”第3题。

  组织学生读题,理解题意。表中每栏的每排人数是各怎样算出来的?排数和每排人数都是24的什么数?

  五、全课总结

  这节课你学会了什么?

倍数与因数教学设计9

  教学目标

  1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数,学生能了解一个数的因数是有限的的;通过学习使学生掌握找一个数的因数的方法,能熟练地找一个数的因数。

  2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  学情分析

  学生在已学过整数除法的基础上进一步学习因数与倍数,理解因数和倍数的含义,掌握找一个数的因数的方法,能熟练地找一个数的因数。这节课这些知识点都是新知,教师需要在具体的教学活动中去感知辨析。

  教学重点

  理解因数和倍数的含义,会找一个数的因数。

  教学难点

  掌握找一个数的因数的方法,能熟练地找一个数的因数。

  教学过程

  一、导入

  课前交流:课开始之前,与学生交流人与人之间的关系。

  师:在家里你和爸妈之间是什么关系?在学校我和你们的关系是?

  师:对,我们是师生关系,我是你们的老师,你们是我的学生。人与人之间的关系是相互依存的,不能单独存在。在数学这个大家庭里也存在着有这样相互依存关系因数和倍数,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  二、理解掌握因数和倍数的意义

  (一)复习导入

  教师用课件出示教材第5页例1,

  教师:这些除法算式有什么相同点?生:被除数和除数都是整数。

  引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数没有余数的分为一类,商不是整数的分为一类。

  (二)因数和倍数的意义

  1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

  教师以商是整数的第一题为例说明,板书:12÷2=6。教师:12÷2=6在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2的倍数,2是12的因数。再交换除数和商的位置得12÷6=2,得出12是2和6的倍数,2和6是12的因数、

  2、说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。

  学生通过说一说其他的式子,理解在没有余数的整数除法中,被除数、除数和商之间的倍数与因数关系。

  三、因数与倍数的关系

  1、通过刚才同学们的回答,你发现了倍数与因数的关系是什么?

  教师板书:因数与倍数是相互依存的。

  2、用字母式子表示因数和倍数关系

  学生同桌举例,并说出谁是谁的因数,谁是谁的倍数。

  教师:在自然数中像这样的例子还有很多,举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  a×b=c,那么a和b是c的因数,c是a和b的倍数。(板书)

  这里的a、b、c都是什么数,是自然数吗?非0自然数(板书)

  3、注意:为了方便,我们在研究因数和倍数时,所说的数指的是自然数,而且一般不包括0。

  4、下面的说法对吗?说出理由。

  (1)因为20÷4=5,所以4和5是因数,20是倍数。

  (2)因为7×4=28,所以7和4是28的因数,28是7和4的倍数。()

  (3)13是13的'因数。

  (4)因为18÷1.8=10,所以1.8是18的因数,18是1.8的倍数。()

  四、找因数的方法

  1、出示例2:18的因数有哪几个?

  自己找一找、写一写,在练习本上把算式记录下来。

  学生尝试完成后汇报:(18的因数有:1,2,3,6,9,18)

  教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  借助数轴来看18的因数是怎样快速地找到的。

  找因数的方法:从小到大,一对一对有序地找,当下一对因数与前一对因数重复时就不要找了。

  教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的,或一对一对地写,其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。

  2、对口令,找因数

  20的因数有:1,2,4,5,10,20

  36的因数有:1,2,3,4,6,9,12,18,36

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  24的因数有:1,2,3,4,6,8,12,24

  1的因数有:1,11

  仔细看看,36的因数中,最小的是几,最大的是几?

  3、你发现了什么?

  (1)一个数的最小的因数是1,最大的因数是本身;

  (2)一个数的因数个数是有限的;

  (3)1是所有非零自然数的因数。

  五、课堂作业

  猜猜我是谁:

  (1)我是所有非0自然数的因数;

  (2)我的最大因数是12;

  (3)我比5小并且有3个因数;

  (4)我只有1个因数。

  六、你知道吗?

  了解完全数。

  七、课堂小结

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

倍数与因数教学设计10

  教学内容:

  《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

  教学目标:

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:理解因数和倍数的含义。

  教学过程:

  一、创设情境,引入新课

  师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?

  学生回答。

  师:哦,老师知道了。XXX是XXX的好朋友。如果他这样介绍:XXX是好朋友。能行吗?

  生:不行,这样就不知道谁是谁的好朋友了。

  师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。

  二、探索交流,解决问题

  1、师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。

  根据学生的汇报板书:

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生:第①组每个式子都有1、12这两个数。

  生:第②组每个式子都有2、6、12这三个数。

  生:第③组每个式子都有3、4、12这三个数。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

  生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

  生:可以说12是12的因数吗?

  生:我认为可以,12×1=12,1和12都是12的因数。

  师:说得真好,从上面3组算式中,

  我们知道1,2,3,4,6,12都是12的因数。

  师出示:

  1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

  12 × 5=60 45 ÷ 3=15

  11 × 4=44 9 × 8= 72

  2、8是倍数,4是因数。…………… ( )

  强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

  因数和倍数不能单独存在。

  师出示:0×3 0×10

  0÷3 0÷10

  通过刚才的计算,你有什么发现?

  生:我发现0和任何数相乘,都等于0。

  生:0除以任何数都等于0。

  生:我补充,0不能作为除数。

  师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

  师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

  生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

  师:这个问题提得好!谁能回答他的问题?

  生:我觉得好像不一样,但不知道为什么?

  生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

  师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

  2、试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

  2、3、5、9、18、20

  师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

  生:2、3、9、18都是18的因数。

  师:18的因数只有这4个吗?

  师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。

  投影仪出示学生的不同作业。交流找因数的方法。

  师:出示18的因数有:1、18、2、9、3、6;

  你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

  生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

  师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

  生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

  师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

  生:乘法。

  板书:18的因数有:1、2、3、6、9、18。

  师:18的因数也可以这样表示。(课件出示集合圈图)

  组织交流:

  通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

  突出要点:有序(从小往大写),一对对找

  (哪两个整数相乘得这个数),再按从小到大的顺序写出来。

  用我们找到的方法,试一个。

  课件出示:

  填空:

  24=1×24=2×( )=( ) ×( )=( ) ×( )

  24的因数有:_______________

  再试一个:16的因数有( )

  师:一个数的因数,我们都是一对一对地找的,为什么16的`因数只有5个呢?

  生:因为4×4=16,只写一个4就可以了。

  师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

  生:18的因数有6个,最小的是1,最大的是18.

  16的因数有5个,最小的是1,最大的是16.

  师:谁能把同学们的发现,用数学语言概括起来。

  边交流边板书:

  因数: 个数 最小 最大

  有限 1 它本身

  2、师:刚才同学们通过自主探索和合作交流,不但掌握了找一个数的因数的方法,而且发现了一个数的因数的特点,那么一个数的倍数,怎样找呢?找一个小一点的,2的倍数,请你们在纸上写。

  师:停,写完了吗?你能把2的倍数全部写下来吗?那怎么办?

  生:不能全写下来,可以用省略号表示没写完的。

  师:你写得这样快,有小窍门吗?

  生:用这个数有顺序地乘1、2、3、4、……

  先写2,再逐个加2。

  板书:2的倍数:2、4、6、8、10……

  师:2的倍数也可以这样表示。(出示用集合圈表示的2的倍数)

  找出3的倍数:3、6、9、12、15 ……

  观察2和3的倍数,你有什么发现:

  板书: 倍数 : 个数 最小 最大

  无限的 它本身 无

  师:找出30以内5的倍数:

  生:5、10、15、20、25、30

  师:这一次你找到了哪几个?为什么不加省略号呢?

  课件出示:30以内5的倍数的集合圈图。

  引导学生抽象地概括出一个数的最小因数和最大因数分别是什么,总结出一个数的因数的个数是有限的结论,向学生渗透从

  个别到全体、从具体到一般的抽象归纳的思想方法。

  三、巩固应用,内化提高

  1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

  16和2 4和24 72和8 20和5

  2.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

  4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

  ①( )是4的倍数

  ( )是60的因数

  ( )是5的倍数

  ( )是36的因数

  ②请一名学生模仿刚才老师的要求,继续练习。

  ③想一想,应该提什么要求,让全班同学都能举手?

  生:( )是1的倍数。

  师:全班都举手了,谁能总结刚才的说法。

  生:任何不包括0的自然数都是1的倍数。

倍数与因数教学设计11

  【教学过程】

  一、谈话导入,激发兴趣

  1、回顾学过的数

  2、明确学习主题

  (设计意图:降低学习的起点,让每个学生都参与到本节课的学习中来;了解学生的认知基础,为学习因数和倍数做好铺垫;明确学习方向,知道本节课是对2个非零自然数关系的研究。)

  二、自主学习,探究新知

  1、自主学习

  自学指导:阅读课本p12和p13例1

  (1)2×6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?

  (2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?

  (3)怎样找出18的全部因数?你是怎样想的?

  怎样表示出18的因数?

  要求:1、独立学习2、时间6分钟

  (设计意图:通过自学指导,让学生明确学习的主线,带着问题去阅读,在形成感性认知的基础上,进行有思考的学习,成为有思考的数学课堂,而思考正是数学的魅力所在。)

  2、全班交流

  问题一:初建模型

  在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的`,有着互逆关系的一组概念。

  问题二:深化模型

  明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。

  ab=c(a、b、c为非零自然数)

  问题三:应用模型

  ①交流找一个数的因数的方法及表示方法。

  ②找30、36的因数。

  (设计意图:学生在上一阶段的学习中,多数学生对概念的认知是初步的认知,那么教师有价值的追问,才能把学生引向深入的思考,理解概念的本质,提升学生对因数和倍数的认识,从而建立因数和倍数的概念模型,并能够运用模型找一个数的因数。)

  3、议一议

  (1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?

  (2)通过找一个数的因数,你有什么发现?

  (设计意图:通过议一议,让学生对所学知识进行有效的梳理,从而避免了学生就题论题式的学习,达到例题仅仅是学习的载体的目的。)

  三、检测反馈,拓展运用

  四、板书设计

  因数和倍数

  2×6=122和6是12的因数。

  12是2和6的倍数。

  3×4=12

  ab=c(a、b、c为非零自然数)

  a和b是c的因数,c是a和b的倍数。

倍数与因数教学设计12

  教学目标:

  1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。

  2、使学生依据倍数和因数的含义以及已有的乘法和除法知识,通过尝试和交流等活动,探索并掌握找一个数的倍数和因数的方法,能在1-100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

  3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中,进一步感受数学知识的内在联系,提高数学思考的水平。

  教学重点:

  理解倍数和因数的含义。

  教学难点:

  探索并掌握找一个数的倍数和因数的方法。

  教学过程:

  一、理解倍数和因数

  1、用12个同样大的正方形拼成一个长方形,可以怎样摆?

  先独立思考,在同桌交流自己的看法,再集体交流。根据学生的回答,教师出示相应的拼法,并列式。

  2、在4×3=12中,12是4的倍数,12也是3的倍数,3和4都是12的因数。你能照老师的样子试着说一说吗?如果有学生只说倍数和因数,让学生通过争论明白倍数和因数表示的是两个数之间的关系,因此一定要说谁是谁的倍数,谁是谁的因数。

  3、下面这些算式也能用倍数和因数表示吗?

  16÷2=85+6=1118-6=12

  学生如果有争论,让学生说说自己的理由。由16÷2=8可以得到2×8=16,实际上16是2和8的乘积,所以也可以用倍数和因数来表示。

  4、你能自己写出一条算式,用倍数和因数来说一说吗?学生自己思考,写一写,然后集体交流。

  二、探索找一个数的倍数的方法

  1、谈话:3的倍数有哪些呢?我们来找找看。一分钟内完成。

  1分钟内你们写完了吗?如果再给半分钟呢?为什么?

  2、3的倍数有很多,我们不能都写出来,就用省略号来代替。下面,谁来说说看,3的倍数是怎么找的?小结:找一个数的倍数,只要用这个数去乘以1、2、3、。就能得到它的倍数。

  3、填一填:2的倍数有________________________

  5的倍数有________________________

  4、观察上面的几个例子,你有什么发现?

  先小组交流,再指名回答。

  指出:一个数的倍数的个数是无限的.,最小的倍数是它本身,没有最大的倍数。

  三、探索找一个数因数的方法

  1、尝试:用自己的方法找出36的所有因数。

  (1)先思考再尝试。

  (2)交流和评价

  2、用这样的方法,找找16的因数和7的因数。

  3、讨论:一个数的因数有哪些特征?

  指出:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

  四、练习

  练习一、二、三。

  五、总结

  这节课你有什么收获?

  反思:

  让学生借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。

  在教学找一个数的倍数时,让学生在1分钟内写3的倍数,再组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“1分钟内你们写完了吗?如果再给半分钟呢?为什么?”设疑,置疑,激发学生的反思力度,有效地激发了学生的求知欲望,从而积极主动地获得知识。

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

倍数与因数教学设计13

  XXXX小学 XXXXX

  教学内容:教材例1、例2

  教学目标

  1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

  2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

  3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

  教学重点:理解因数和倍数的概念。

  教学难点:掌握求一个数的因数和倍数的方法。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多媒体。

  教学过程:

  一、新课导入:

  1.出示教材第5页例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

  (2)分类:你能把上面的除法算式分类吗?

  学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

  第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

  二、探索新知:

  (一)、明确因数与倍数的意义。(教学例1)

  1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

  就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

  2. 学生尝试。

  教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

  3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

  引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。

  4. 即时练习。指导学生完成教材第5页“做一做”。

  小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

  (二)、探索找一个数因数的方法。(教学例2)

  1. 出示例2:18的因数有哪几个?

  (1) 学生独立思考。

  师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

  18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

  (2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

  (3)采用集合图的方法。

  教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

  (4)练习。让学生找出30的因数和36的因数,并组织交流。

  30的因数有1,2,3,5,6,10,15,30。

  36的因数有1,2,3,4,6,9,12,18,36。

  三、巩固练习

  指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

  四、课堂小结

  师:通过本节课的学习,你有什么收获?

  板书设计:

  因数和倍数

  12÷2=6 12是2和6的倍数

  2和6是12的因数 18的因数有1,2,3,6,9,18。

  一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  作业:教材第7页“练习二”第2(1)题。

  第二单元:因数和倍数

  第二课时:因数与倍数(2)

  教学内容:教材P6例3及练习二第2(1)、3~8题。

  教学目标:

  知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

  情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

  教学重点:掌握求一个数的倍数的方法。

  教学难点:理解因数和倍数两者之间的关系。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多媒体。

  教学过程:

  一、复习导入

  10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

  二、探索新

  1.探索找倍数的方法。(教学例3)

  出示例3:2的倍数有哪些?

  师:你会找2的倍数吗?给你们1分钟的`时间,看谁写得又对、又快、又多!准备好了吗?开始!

  师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

  师:大家都是用的什么方法呢?

  生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  师:哪些同学也是用乘法做的?

  师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

  师:为什么?(因为2的倍数有无数个)

  师:怎么办?(用省略号)

  师:通过交流,你有什么发现?

  引导学生初步体会2的倍数的个数是无限的。

  追问:你能用集合图表示2的倍数吗?

  学生填完后,教师组织学生进行核对。

  (4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

  4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

  先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

  (1)一个数的最小因数是1,最大因数是它本身。

  (2)一个数的最小倍数是它本身,没有最大倍数。

  (3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  三、巩固提升

  1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

  学生独立完成全部练习后教师组织学生进行集体证正。

  集体订正时,教师着重引导学生认识以下几点:

  (1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

  (2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

  (3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

  2.利用求倍数的方法解决生活中的实际问题

  出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

  理解题意,分析解答。

  教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

倍数与因数教学设计14

  教学内容:

  《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

  教学目标:

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:

  理解因数和倍数的含义。

  教学过程:

  一、创设情境,引入新课

  师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?

  生:父子(父母、母子、母女)关系。

  师:我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  二、认识因数与倍数

  师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

  根据学生的汇报板书:

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生:第①组每个式子都有1、12这两个数。

  生:第②组每个式子都有2、6、12这三个数。

  生:第③组每个式子都有3、4、12这三个数。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12。

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

  生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

  生:可以说12是12的因数吗?

  生:我认为可以,12×1=12,1和12都是12的因数。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  师出示:11÷2=5……1。问:11是2的倍数吗?为什么?

  生:我认为不是,因为11除以2有余数。

  师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

  生:2×4=8,2和4是8的.因数,8是2和4的倍数。

  生:40÷2=20,40是2和20的倍数,2和20是40的因数。

  师出示:0×3 0×10

  0÷3 0÷10

  通过刚才的计算,你有什么发现?

  生:我发现0和任何数相乘,都等于0。

  生:0除以任何数都等于0。

  生:我补充,0不能作为除数。

  师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

  师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

  生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

  师:这个问题提得好!谁能回答他的问题?

  生:我觉得好像不一样,但不知道为什么?

  生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

  师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

  三、课堂练习

  1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

  16和2 4和24 72和8 20和5

  2.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

  4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

  ①( )是4的倍数

  ( )是60的因数

  ( )是5的倍数

  ( )是36的因数

  ②请一名学生模仿刚才老师的要求,继续练习。

  ③想一想,应该提什么要求,让全班同学都能举手?

  生:( )是1的倍数。

  师:哗,全班都举手了,谁能总结刚才的说法。

  生:任何不包括0的自然数都是1的倍数。

倍数与因数教学设计15

  教学内容:

  教学目标:

  1 让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。

  2 让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。

  教学重点:理解倍数和因数的意义。

  教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。

  教学过程:

  一、直接导入

  师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)

  [评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]

  二、教学倍数和因数的意义

  (屏幕出示12个完全相同的正方形)

  师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?

  生:我可以拼出一个3×4的长方形。

  师:你们猜猜看,这会是一个什么样的长方形?

  生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)

  生:我还可以拼出一个2×6的长方形。

  生:我还可以拼出一个1×12的长方形。(师问法同上,略)

  师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。

  [评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]

  师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。

  师:同学们一起来读一读,感受一下。

  师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)

  师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。

  师(出示18÷3=6):谁是谁的倍数?谁是谁的因数?为什么?

  生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)

  屏幕出示:4是因数,24是倍数。

  师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)

  师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)

  屏幕出示一组数:36、4、9、0、5、2。

  师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)

  设疑:

  (1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)

  (2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)

  (3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)

  [评析:倍数和因数意义的学习层次分明。(1)猜想:由1 2个完全相同的正方形拼成一个长方形的不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的意义。(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]

  三、探讨找一个数的因数的方法

  1 师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?

  生:容易漏掉或重复。

  师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)

  展示学生的作品,学生可能出现的答案有:

  (1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;

  (2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的'因数。

  在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)

  2 探讨一个数的因数的特征。

  课件出示12的因数、15的因数和36的因数。(从小到大排列)

  学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?

  课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。

  师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。

  [评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]

  四、探讨找一个数的倍数的方法

  1 师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)

  2 师:你是怎样有序地、完整地找出3的倍数的?

  生:用3分别乘1、2、3……得出3的倍数。

  生:用3依次地加3得到3的倍数。

  师:你认为哪种方法能更迅速地找出3的倍数?(学生讨论交流)

  师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)

  3 写出30以内5的倍数。(做在练习纸上)

  4 课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。

  师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。

  [评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]

  五、组织游戏,深化认识

  师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?

  游戏——请到我家来做客

  (每位学生的手中,都有一张写有该名学生的学号卡片)

  课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。

  (1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)

  (2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!

  (3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!

  (每位学生卡片上的数都符合要求,所以全班学生都站了起来)

  师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)

  师:是不是所有的自然数都可以呢?

  生:除了0。

  屏幕出示:所有非零自然数都是1的倍数。

  (4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)

  屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。

  六、挑战自我,拓展升华

  师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)

  挑战——你猜、我猜、大家猜I(屏幕演示动画标题)

  规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?

  (1)20、5、4、3。

  答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。

  (2)4、12、18、3。

  答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。

  [评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]

  七、全课总结

  师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!

  总评:

  本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。

  1 意义教学引导学生自主构建。

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。

  本课中,倍数和因数的意义教学分三个层次:

  1 借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。

  2 通过除法算式找因倍关系。

  3 渗透倍数和因数的相互依存性。

  2 合理组织教材,将找一个数的因数及其特征教学提前。

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。

  最后设疑:

  (1)为什么不选O呢?(让学生理解倍数和因数是针对非零的自然数)

  (2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)

  (3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)

  这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  3 寻找一个数的因数和倍数的方法让学生自己生成。

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。

  寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  4 增强游戏中数学思维的含量。

  知识在游戏中深化,在挑战中升华。

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。

【倍数与因数教学设计】相关文章:

因数与倍数的教学设计02-03

《因数与倍数》教学设计07-18

《因数和倍数》教学设计11-20

《因数和倍数》教学设计10-31

《倍数和因数》教学设计06-11

《倍数和因数》教学设计及反思09-30

《倍数和因数》教学设计优秀12-21

《因数和倍数》教学设计范文07-24

《因数和倍数》教学反思02-06