《体积单位》教学设计

时间:2024-08-04 12:13:46 教学资源 投诉 投稿

【通用】《体积单位》教学设计15篇

  在教学工作者开展教学活动前,通常会被要求编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么你有了解过教学设计吗?以下是小编精心整理的《体积单位》教学设计,希望对大家有所帮助。

【通用】《体积单位》教学设计15篇

《体积单位》教学设计1

  教学内容: 教科书第111---113页相应的“做一做”,练习二十九的第1~3题、

  教学目的:

  1、通过观察、实验,使学生初步建立“体积”的概念,知道计量体积,要用体积单位、认识常用的体积单位:立方米、立方分米、立方厘米、知道1立方厘米、1立方分米、1立方米的实际大小、

  2、使学生知道计量物体的体积,就要看它所含体积单位的个数,建立关于体积大小的空间观念、

  3、使学生初步了解体积单位与长度单位、面积单位的区别和联系、

  4、在学生学习活动中体现阶梯式评价。

  教具、学具准备:

  1、教师准备:

  (1)实验器材:量杯、石块、水、

  (2)1立方厘米、1立方分米的实物模型,用3根1米长的木条钉成的直角架、

  (3)大小不同的长方体、正方体实物、

  (4)多媒体课件、

  (5)桌椅摆放:六组,每两组对称形。

  2、学生准备:

  (1)1立方厘米、1立方分米的模型、

  (2)长方体(正方体)纸盒或实物、

  教学过程:

  一、谈话导入

  同学们,我们五年三班的同学特别喜欢参加学校举行的各种各样的比赛,是吗?而且每次都取得不凡的成绩。作为你们的班主任老师,我感到特别的骄傲。那么现在,我们就来一个小小的比赛,好不好?

  第一轮:比眼力。依次发四条长短不同的线段。指出先谁拿,后一起拿。

  第二轮:比运气。教师出示四个不同的平面图形。学生随意点。

  第三轮:比判断力。依次发四个不同的长方体、

  谈话:比较两条线段的长短,比较两个平面图形的大小,比较两个立体图形的大小、它们的意思相同吗?

  通过谈话后,引出“长度”、“面积”、“体积”等名称,提出问题:什么叫做物体的体积呢?(板书课题)

  二、学习新课

  看到这个课题,你有什么要问吗?

  什么叫体积?体积单位有哪些?体积和表面积什么不同?(师板书:意义、单位、体积和表面积的区别)

  师:提得很好,下面我们就来共同探讨这些问题。

  (一)、建立体积概念

  那么,什么叫做物体的体积呢?你们想怎样得到这个问题的答案?自选学习方式。

  教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸入玻璃杯的水中、教师:注意观察放入石头后水面有什么变化、教师将石头提起,再放入水中一次、然后让学生说一说观察的结果、学生:放入石头,水面上升、教师:把石头放入水里后,水面为什么会上升呢?请几位学生回答后,教师指出:石头占有一定的空间,放入水里后,使得水所占的空间变大了,所以水面就上升了、

  (1)实验:引导学生观察实验过程,注意实验过程中量杯里水位的变化情况、想一想,这说明了什么?

  学生做一个实验,大家还要仔细观察,动脑筋思考、装入满满一杯沙子、然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果、学生:沙子多出来了、大家想一想,为什么沙子会多出来呢?让几位学生说一说自己的想法、在学生发言的基础上概括、

  (2):因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了、

  (3)(自学)在水杯中放入一块石头,在水面处做一个黄色记号。

  拿出石块后,再放入一大些的石块,在水面处做绿色记号。

  观察讨论:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?

  汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升。石块大占据空间大,水面上升得高;石块小占据空间小,水面上升得低。

  讨论、归纳:物体占有空间、物体所占空间有大有小、

  (2)教师出示大小不同的长方体、正方体实物、让学生观察,说一说,哪个物体所占空间较大,哪个物体所占空间较小?或者说哪个物体的体积较大,哪个物体的体积较小?

  让学生用自己的话说一说“体积”的意义、

  结论:物体所占空间的大小叫做物体的体积、教师再进一步讲解、教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间,等等(板书)

  (3)巩固、看教科书第111页的“做一做”、

  哪堆木块的体积大?哪堆木块的体积小?并说明理由、

  (二)认识体积单位

  请同学们观察自己带的长方体或正方体、同学之间可以互相比一比,你们能确切说出它们的体积大小吗?

  教师指出:在实际生活和生产中,有时只需要凭感觉判断出谁大谁小就可以,但是有时也需要知道物体到底有多大,这就要我们精确地计量物体的体积。计量体积就要用体积单位,常用的体积单位有立方厘米、立方分米、立方米(板书)下面我们就认识一下这些体积单位。

  1、认识1立方厘米。

  (1)教师出示一块1立方厘米的模型井指出:这就是体积为1立方厘米的正方体。

  (2)分组观察探究,然后汇报:你知道了什么?(每四个人一组,每组一个1立方厘米的正方体模型)

  引导学生:

  看一看:1立方厘米的体积比较小,是正方体。

  量一量:1立方厘米的正方体的棱长是1厘米。

  说一说:棱长1厘米的正方体体积是1立方厘米(板书)

  想一想:体积是1立方厘米的物体比较小。

  引导学生说出:体积大约是1立方厘米的物体,如:蚕豆等物体,再引导学生用手势表示一个食指尖大约是1立方厘米。

  议一议:计量体积使用立方厘米比较恰当的物体。(手指尖、玻璃珠、骰子)

  2、认识1立方分米。

  (1)师出示一块1立方分米的体积模型并指出:这就是体积为1立方分米的正方体。

  (2)分组观察探究然后汇报:你知道了什么?

  引导学生:

  看一看:1立方分米的体积大一些,是一个正方体。

  量一量:1立方分米的正方体的棱长是1分米。说一说:棱长1分米的正方体,体积是1立方分米。(板书)

  想一想:体积是 1立方分米的物体比 1立方厘米的物体大。引导学生说出体积大约是1立方分米的物体。再引导学生做出:用手势表示1立方分米。

  议一议:计量体积使用立方分米比较恰当的物体。(粉笔盒、药盒、礼品盒等。)

  3、认识1立方米

  学生分组观察探究

  引导学生:说一说:根据以上两个体积单位的推测,什么样的物体的体积是1立方米?(板书:棱长1米的正方体,体积是1立方米)教师用三棱架在墙角演示1立方米,注意观察形状大小。教师用棱长1米的架子演示1立方米的大小,然后让学生估一估,用多少个1立方分米的正方体拼起来有1立方米、

  想一想:列举物体体积大约是1立方米的物体,如:两个课桌合在一起;电视机箱子……。

  启发学生借助四个同学围成的空间来表示1立方米。让学生看一看1立方米的体积有多大、教师:1立方米的空间大约可以容纳8位小学生、教师请8位学生钻进架子里,半蹲着,充满棱架、让全班同学体会1立方米的实际大小、(装电视机的纸箱、电脑台,洗衣机等等。)

  议一议:计量体积使用立方米恰当的.物体。4、互相议论:这三个体积单位的共同点是什么?不同点是什么?

  引导总结:体积单位分别是几个规定了棱长大小的正方体。1立方厘米就是棱长1厘米的正方体……

  4、巩固体积单位的认识、

  以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?

  (1)判断:(投影出示,113页做一做1)

  (2)操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。

  教科书第113页“做一做”的第1题,让学生充分说一说它们有什么不同、引导学生讨论归纳三者的不同点,使学生知道:长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。

  三、课堂练习,形成技能。

  1、用多大的体积单位表示下面物体的体积比较适当?

  (1)、一块橡皮的体积约是8 ( )(2)、一台录音机的体积约是 20 ( )。

  (3)、五年级语文课本的体积约是297( )。

  (4)、一个蓄水池的体积是4.2 ( )。

  2、操作练习。摆一摆、想一想、(可以小组合作完成)

  用12个棱长1厘米的正方体木块摆成不同形状的长方体。有多少种不同的摆法?它们的长、宽、高各是多少?体积各是多少?把你摆的情况记录下来,看你能发现什么?

  想一想:体积数是12立方厘米,跟各种摆法的长方体的长、宽、高的分米数有什么关系?2、

  3、书113页做一做第2题,通过阅读操作练习引导学生归纳:不论物体是什么形状,含有几个体积单位,它的体积就是多少。启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的、)教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的、)

  4、下面的图形都是由棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米。(填书:练习二十九第3题)你是怎样数出来的,怎样数简便?

  5、下图中哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?

  6、让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米、

  7、估量大约多少个1立方厘米的小方块拼起来有1立方分米、

  四、可随机自由提问。

  请同学们把这堂课学习的内容整理一下,你学到了什么?学会有关体积的知识有什么用呢?

  根据学生发言归纳、

  教学反思:

  本节课教学的主要任务是使学生理解“体积”的概念,知道计量体积要用体积单位、认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念、教学之后认真反思觉得这个教学任务基本完成。

  本节课教学的关键是提供充分的直观素材,让学生通过实验、观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与“长度”、“面积”等概念的比较中认识“体积”,便于帮助学生在概念系统中理解新概念、为了更好的体现我的 “分层分组”的教学特色。我将新课分三个层次、首先是通过观察实验,从实验情境中领悟物体占有空间→物体所占空间有大有小→物体所占空间的大小叫做物体的体积、让学生选择自己喜欢的学习方式来学习。接着让学生观察和比较实物的大小,体验到要确切知道物体体积的大小,要用体积单位来计量、并引导学生对常用的体积单位通过看一看、量一量、说一说、想一想、议一议等方式进行学习。在此基础上,通过观察、比划、想象、比较;建立1立方厘米、1立方分米、1立方米的实际大小的空间观念、第三层次,通过小组合作拼一拼、摆一摆、说一说体积大小,深化对体积和体积单位的认识,并进一步理解:计量体积,就是看物体所含体积单位的个数、最后,对全课内容进行整理归纳,形成整体认知、

  巩固练习对教科书练习稍作引申,放在最后,要求学生记录下摆出的几种不同长方体的长、宽、高和它们的体积,并想一想“你发现了什么”,为下一课学习体积的计算做铺垫、

《体积单位》教学设计2

  教学目标:

  1、经历体积与容积的概念的建立过程,理解体积和容积的意义。感知常用体积和容积单位的大小,能正确地选择合适的单位进行相应数量的计量。

  2、在亲历感知,在感悟中形成对学科学习的内在兴趣。

  教学重点:

  教学难点通过参与试验、分析与尝试,掌握体积和容积概念,会确定体积和容积相应并能正确地把握体积的大小。

  教学方法动手操作、分析、合作

  教学准备每个小组准备一个盛水的量杯一个土豆。

  教学过程:

  一、导入新课

  师:我们已经学习了长方体和正方体表面积的知识,这节课,我们继续探究长方体和正方体的体积和容积。

  二、感受物体的体积

  1、分组实验

  方法:将土豆放入一个盛水的量杯中,注意记录放入前后的水位高度。

  猜想:量杯中的水位会发生什么变化?

  观察:通过对上面实验的观察,有什么发现?看到土豆放入时,水位上升了;取出时,水位又基本复原。

  思考:这个现象说明了什么?

  生:土豆占有空间,入水时,水会被挤开,造成水位上升;而取出时,土豆所占的位置空出,水于是又复原。

  2、体积的意义:

  师引导学生读书57页中间文字并结合实验同桌交流自己所理解的体积的概念。

  3、想一想:你还能用其它方法感受物体的体积吗?

  三、感受物体的容积

  1、①1箱牛奶的.体积与6盒牛奶的体积比?(1箱牛奶体积大于6盒牛奶的体积。)②1盒牛奶的体积与1杯牛奶的体积比?(1盒牛奶的体积大于1杯牛奶的体积。)

  从上面的结论中你想到了什么?(整个容器体积大于内中装的体积)

  2、归纳容积的意义(板书)

  3、同桌互相举例说明物体的体积与容器,及其大小比较。

  四、体积单位

  1、长度、面积和体积基本单位的确定:

  棱长为1厘米的正方体的体积为1立方厘米

  棱长为1分米的正方体的体积为1立方分米

  棱长为1米的正方体的体积为1立方米

  感觉一下1立方米的大小

  (1)如果同学们在正方体模型中蹲着,会蹲下几个?

  (2)如果把书包放在这个正方体模型中垒起来,大约可以垒多少个?

  2、容积单位的确定:

  师指出:我把能容纳1立方厘米和1立方分米物体的容积的大小分别叫做1毫升和1升。

  在生活中计量液体的体积常以毫升和升为单位。(让学生认真阅读理解5960页中的文字,然后同桌相互说一说)

  3、课堂活动:60页1、2题。通过课堂互动,让学生在搜索和交流中熟悉和增强体积和容积单位大小的实感。

  五、全课总结

  这节课你学会了什么?有什么新的感受?

  六、布置作业

  课本62-63页练习十二第1、2、5题。

  第二课时

  您现在正在阅读的《体积与容积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积与容积单位》教学设计教学目标

  1、掌握体积单位、容积单位之间的进率,能正确地进行单位间的改写。

  2、让学生参与单位间进率的探究中感知。深化认识与把握。

  3、感悟数学与生活息息相关,进而体验成功的乐趣。

  教学重点

  教学难点让学生借助对模型的分层探讨,理解常用体积单位和容积单位间的进率的由来,并掌握体积单位改写的方法。

  教学方法知识迁移法、练习法

  教学准备课件

  教学过程:

  一、复习导入新课

  1、复习体积与容积的意义

  一瓶矿泉水的标签写着:净含550ML,表示瓶中水的(容量、体积、容积)是550ML。

  让学生认真一议,弄清问题是什么。显然是针对水的,由于水不是容器,不可能有容量、容积之说。所以只能是体积。

  2、复习常见的体积单位

  回顾一下常见的体积单位

  3、导入新课

  板书:体积与体积单位

  二、合作探究

  1、例5的教学:体积单位进率的的探讨

  (1)课件展示例5:1立方分米=()立方厘米

  小组探究

  全班反馈:一排10个,一层100个,10层1000个。

  (2)探讨

  (3)填空

  (4)熟记。

  找出体积单位之间的进率的规律

  同桌互说互测

  2、例6的教学:体积单位之间的改写

  (1)课件展示例6;说一说,算一算

  先让学生议一议:

  所示问题的实质是什么?怎么解决?再独立完成,最后进行全班反馈

  反馈:问题的实质方法

  思路的再反思

  三、课堂活动:练习与操作

  1、小组合作:估一估,量一量

  2、练一练

  四、全课总结

  这节课主要学习体积单位,容积单位之间的进率和转化方法。

  五、布置作业

  4、6、7

《体积单位》教学设计3

  教学目标:

  1、结合具体事例,经历认识体积单位之间进率的过程。

  2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。

  3、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。

  教学重点和难点:

  体积单位进率和单位之间的互化。

  教学过程:

  一、教学体积单位间的进率

  1、复习相关旧知1平方分米=100平方厘米的推导过程

  (1)提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。”

  学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程。

  (2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的`示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。

  2、推导1立方分米=1000立方厘米

  (1)提问:“1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?”要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。

  学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。

  (2)展示推导过程

  请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米。

  (3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。

  3、推导1立方米=1000立方分米

  (1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”

  (2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?

  (3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米

  4、总结相邻两个体积单位间的进率.

  (1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

  (2)引导学生观察:1立方分米=1000立方厘米

  1立方米=1000立方分米

  并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。

  5、构建长度、面积和体积单位的计量系统。

  (1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?

  (长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的。)

  (2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第119页上的表格填完整。

  二、练一练1。

  (1)引导学生认真审题:将6立方米、8000立方分米改写成多少立方分米,也就是要将高级体积单位的名数改写成低级体积单位的名数。

  (2)放手让学生自己思考解题的方法.

  (3)引导学生归纳将高级体积单位的名数改写成相邻的低级体积单位的名数的一般方法(师板书):

  高级体积单位的名数×1000=相邻的低级体积单位的名数

  三、练一练2

  四、小结

  引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。这样,学生一般能概括:本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写,在解决实际问题时能正确应用。

  板书设计:

  体积单位间的进率

  1立方分米=1000立方厘米

  1立方米=1000立方分米

  高级体积单位的名数相邻的低级体积单位的名数

《体积单位》教学设计4

  教学目标:

  1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

  2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

  教学重点:

  1、建立体积概念。

  2、认识体积单位。

  教学难点:

  建立体积概念。

  教学设计:

  一、出示课题,学习目标

  1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

  2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。

  二、出示自学指导

  认真看课本总结

  1、体积的意义。

  /2、体积单位:

  三、学生看书,自学

  四、效果检测

  学生概括:物体所占空间的大小叫做物体的体积。(板书)

  常用的'体积单位有:立方米、立方分米、立方厘米。

  练一练:选择恰当的单位:

  (1)、橡皮的体积用(),火车的体积用(),书包的体积用()。(2)、练习:

  ①说一说:测量篮球场的大小用()单位。

  测量学校旗杆的高度用()单位

  测量一只木箱的体积要用()单位。

  ②、一个正方体的棱长是1(),表面积是(),体积是()。(你想怎样填?)

  ③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()

  五、总结:

  这节课我们学习了体积的意义和体积单位。你有什么收获?

  板书设计:

  体积和体积单位

  物体所占空间的大小叫做物体的体积。

  常用的体积单位有:立方米、立方分米、立方厘米。

《体积单位》教学设计5

  教学目标:

  1、通过实践操作,使学生理解体积的含义,建立体积的概念。

  2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。

  3、通过学生的动手实践,加强学生的空间观念。

  教学重点:形成体积的概念和掌握常用的体积单位。

  教学过程:

  一、依据预习提纲,自主学习。

  1.什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)

  3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?

  4.长方体的体积公式是什么?

  5.正方体的体积公式是什么?

  6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  7.讨论长方体和正方体的体积计算方法是否相同.

  二、探索研究,交流展示。

  1.故事引入:出示主题图:乌鸦喝水的故事。

  自由汇报:乌鸦是怎样喝到水的?为什么?

  2.学生实验:

  取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)

  3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?

  不同的物体所占空间的大小不同。

  4.体积概念的引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)

  加深理解:

  三、体积单位的认识:(学生先看书自学,再汇报交流。)

  1.我们已经学过哪些长度单位和面积单位?

  2.出示两个长方体:怎样比较这两个长方体体积的大小呢?

  3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

  介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。

  4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。

  我们规定:棱长是1厘米的正方体的体积是1立方厘米。

  1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。

  ②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)

  1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)

  1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。

  我们生活中,哪些物体的体积大约1立方米?

  5.练习:

  (1)完成P40“做一做”T1。

  说一说分别是用来计量什么的.单位,它们有什么不同?

  长度单位、面积单位、体积单位的联系与区别。

  (2)完成P40“做一做”T2。

  让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。

  三、反馈检测

  1.

  2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  教学设计:

  体积和体积单位

  常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。

  棱长是1厘米的正方体的体积是1立方厘米。

  课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。

《体积单位》教学设计6

  教学目标

  1.通过观察实际,使学生知道什么是体积.

  2.认识常用的体积单位:立方米、立方分米、立方厘米.

  3.能正确区分长度单位、面积单位和体积单位的不同.

  教学重点

  使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念.

  教学难点

  帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积.

  教学步骤

  一、铺垫孕伏.

  1.1米、1分米、1厘米,这是什么计量单位?

  2.1平方米、1平方分米、1平方厘米,这是什么计量单位?

  二、探究新知.

  我们学习了长度和长度单位,面积和面积单位.今天我们要学习一个新概念:体积和体积单位.(板书课题:体积和体积单位)

  (一)实验观察,建立体积概念.

  1.教师演示实验:

  第一步:出示有 杯水的玻璃杯,在水面处做一个红色记号.

  第二步:在水杯中放入一块石头,在水面处做一个黄色记号.

  第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.

  观察思考:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?

  汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.

  石块大占据空间大,水面上升得高;

  石块小占据空间小,水面上升得低.

  2.学生分组实验.

  实验方法:

  第一步:拿出装满细沙的杯子,把细沙倒在一边.

  第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.

  第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.

  观察思考:出现了什么结果?这说明了什么?

  汇报归纳:放入大木块,外边剩的沙多;放人小木块外边剩的沙少.

  这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.

  3.总结两次实验结果.

  教师提问:以上的两个实验说明了什么?

  学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.

  教师明确:把物体所占空间的大小叫做物体的体积.(板书)

  4.比较物体体积的大小.

  实物比较:字典和大词典 桌子和椅子 水桶和茶叶桶 课本和练习本

  (教师出示一组体积接近的`物体)提问:这两个物体谁的体积大?

  (二)认识体积单位.

  教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们

  精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立

  方厘米、立方分米、立方米(板书)

  1.认识1立方厘米(出示一块1立方厘米的体积模型)

  这就是体积为1立方厘米的正方体.

  分组观察,然后汇报:你知道了什么?

  看一看:1立方厘米的体积比较小,是正方体.

  量一量:1立方厘米的正方体的棱长是1厘米.

  说一说:棱长1厘米的正方体体积是1立方厘米(板书)

  想一想:体积是1立方厘米的物体比较小.

  议一议:哪些物体计量体积时使用立方厘米比较恰当?

  2.认识1立方分米.(出示一块1立方分米的体积模型)

  这就是体积为1立方分米的正方体.

  分组观察,然后汇报:你知道了什么?

  看一看:1立方分米的体积大一些,是一个正方体.

  量一量:1立方分米的正方体的棱长是1分米.

  说一说:棱长1分米的正方体,体积是1立方分米.(板书)

  想一想:体积是1立方分米的物体比1立方厘米的物体大.

  议一议:哪些物体计量体积时使用立方分米比较恰当?

  3.认识1立方米.

  思考:什么样的物体的体积是1立方米?

  (板书:棱长1米的正方体,体积是1立方米)

  议一议:哪些物体计量体积时使用立方米比较恰当?

  4..比较:这三个体积单位的共同点是什么?不同点是什么?

  长度单位、面积单位和体积单位又有什么不同点呢?

  长度单位:线段

  面积单位:正方形

  体积单位:正方体

  (三)计量物体的体积.

  怎样用这些体积单位计量物体的体积呢?

  计量物体的体积就是一个物体里含有多少个体积单位,它的体积就是多少

  (四)反馈练习.

  1.看图说出物体的体积.

  2.用12个1立方厘米的正方体木块摆成不同形状的长方体.它们的体积各是多少?

  (都是12立方厘米.不论物体是什么形状,含有几个体积单位,它的体积就是多少)

  三、全课小结.

  这节课你学了哪些知识?

  四、随堂练习.

  1.填空.

  一块橡皮的体积约是8( )

  一台录音机的体积约是20( )

  运货集装箱的体积约是40( )

  2.连线:学校主席台的体积 24立方厘米

  书包的体积 24立方米

  碳素墨水盒的体积 24立方分米

  3.说说身边的物体的体积大约是多少?

  五、课后作业.

  下面的图形都是用棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米?

  六、板书设计

  体积和体积单位

  物体所占空间的大小叫做物体的体积.

《体积单位》教学设计7

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。

  教学准备:

  体积是1立方厘米的小正方体,容积是1立方分米的小正方体,多媒体课件前置预习:

  1、棱长为1分米的正方体容器里可以放()个体积为1立方厘米的小正方。

  2、1m3=()dm3 1L=()立方分米,1ml=()立方厘米1L=()ml教学过程:

  一、复习回顾,导入新课

  师:我们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)

  师:(读题提问)常用的体积单位有哪些?(生齐答)

  师:(继续提问)容器内的液体量一般使用哪些单位?师:(读题,举例说明1m,1dm,1cm分别有多大)

  生:举例说明,(每个举例两、三个)

  师:那它们间的进率是多少呢,猜一猜,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。

  二、自主探究,获取新知

  师:小组合作,一起观察、分析课前准备的正方体,棱长为1分米的正方体盒子中,可以放多少个体积为1立方厘米的小正方体?想一想,说一说,填一填

  生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,大的正方体一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,刚好能装1000个,所以棱长为1分米的正方体盒子中,可以放1000个体积为1立方厘米的小正方体,所以1立方分米=1000立方厘米。

  生:体积为1立方分米的正方体,棱长为1分米,也可以看成是棱长为10厘米的正方体,体积是10×10×10=1000立方厘米。所以1立方分米=1000立方厘米,它们只是单位不同,但是表示的正方体的大小是相同的。师:演示订正师:同学通过探索知道了立方分米和立方厘米的关系1立方分米=1000立方厘米,老师有一个问题,在前面的学习中我们学习了升和毫升,现在你知道升和毫升的关系吗?请大家说说1L=()立方分米,1ml=()立方厘米,1L=()ml?生:棱长为1分米的容器的容积为1升,这个容器所能容纳物体的.体积就是1立方分米,所以1升=1立方分米。

  生:棱长为1厘米的容器的容积为1毫升,这个容器所能容纳物体的体积就是1立方厘米,所以1毫升=1立方厘米。

  生:因为1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升

  师:你的逻辑推理能力真厉害,大家同意吗?

  师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000,还有哪一个体积单位我们还没有研究呢?1立方米等于多少立方分米?你是怎样想的,生独立尝试方法同上

  师:同学真棒,我们得出了1立方米=1000立方分米,请大家观察这个些体积单位,相邻的体积单位之间的进率是?、容积单位呢?师:请大家完成书本第44页的表格生汇报订正

  师:同学都理解了吗?请大家思考一下1立方米=()立方厘米。与组员说说你的想法。生:因为1立方米=1000立方分米,1立方分米=1000立方厘米,所以1立方米=1000立方分米=(1000000)立方厘米

  师:通过学习,我们知道了相邻的体积单位,容积单位之间的进率是1000,你们能用学习的知识完成下面的练习吗?

  三、巩固练习,应用新知

  书本第45页练一练第1、2、3、4、5题

  四、全课总结

  五、板书设计

  体积单位的换算

  1m3=1000dm3 1dm3=1000cm3

  1m3=1000dm3=1000000cm3 1L=1dm3 1mL=1cm3

  1L=1000mL

《体积单位》教学设计8

  教学内容:

  义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。

  教学目标:

  1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;学会用体积单位来描述物体的大小;能合理估计物体的体积的大小。

  2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。

  3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

  教学重点:

  形成体积的概念和掌握常用的体积单位。

  教学难点:

  形成体积概念。

  教学准备:

  两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。

  教学过程:

  课前谈话:同学们,在我们的生活中,有很多看似平常的事物,如果我们细心去观察和思考,总能发现一些不寻常的知识,这节课你们愿不愿意和老师一起去观察和思考?

  一、抓住体积概念本质,就地取材,创设生活情境。

  师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”

  师:“估计一下,你们现在的抽屉还能放些什么?能放多少?”

  师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”

  〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕

  师:“抽屉没塞满说明抽屉还有空间,如果东西放满了,也就没有空间。从有空地儿到没有空间说明什么?”

  师:“在你们的抽屉里再放一个书包或一些书,能让你的抽屉变得满满的,也就是说书包能占抽屉的空间。发挥你们的想象,你们抽屉的那点儿空地或者说空间能放哪些物品?

  师:“书包可以把抽屉的空间占了,几十本书也能把抽屉的空间占了,放上一箱的酸奶同样也可以把抽屉的空间占了。……说明什么?”

  物体都会占空间,大家举例说一说物体占空间的现象。

  〔设计意图:通过交流和想象,让学生理解物体是可以把空间给占了的,也就是说物体是要占一定的空间的。〕

  师:“物体都会占空间,是不是物体所占空间都一样呢?”

  师:“物体所占的空间大小不一样,有的物体占空间大些,有的物体占空间小些,物体所占空间的大小叫做物体的体积。”

  教师板书:物体所占空间的大小叫做物体的体积。

  〔设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。以学生天天相见,日日接触的抽屉、书包为学习素材,学生学习亲切,又好奇。熟而不能再熟的身边事物也有值得讨论和学习的问题,自然这样的学习是学生最愿接受学习方式,也最易让学生理解和体会学习的内容和学习方法。〕

  二、找准学生的学习起点,创设精准的问题情境,探索学习常用体积单位,深化理解物体的体积概念。

  师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”

  师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

  师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”

  学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

  师:“你们知道他们的书包有多大了吗?”

  师:“谁能用打电话的形式告诉我,他们的书包有多大?”

  师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39面,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”

  设计意图:其一、问题情境是引导学生有效学习的保证,从学生的知识起点创设出学生的问题情境能较好的激发学生的探究学习的动力。学生在认识了体积概念后,用直观形式来描述物体体积应该说是不成问题的,用手势比划一个物体的大小,对五年级的学生来说经验是非常丰富的,而用电话的形式来告诉老师物体的体积,对没有学习体积单位的学生来说是一个挑战。描述物体的体积需要个标准,而这个标准便是体积单位,因为学生没有这个标准,所以学生完不成用电话的形式告诉别人物体的体积,也因为需要,学生的探究欲也越强,此时让学生自主学习课本会收到较好的学习效果。其二、学生的学习目的不仅是从教师那得到解决问题的结果,他们需要的是形成学习的动力和学习的方法,指导阅读教材,学会自主学习也是课堂教学的一个重要教学目标。这一环节的设计体现了教学对学生学习的兴趣的鼓动性和对学习方法的指导性。

  通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。〕

  师:“在我们的生活中要用到体积单位,如立方厘米、立方分米、立方米,它们都是描述物体大小的体积单位。书上是怎样规定1立方厘米、1立方分米和1立方米的?找出来,并说一说。”

  观察1立方分米和1立方厘米的`正方体模型,然后再用手势比划一下它们的大小。同一小组的同学可以互相进行学习。

  学生自由活动,探索和体验1立方厘米、1立方分米、1立方米的大小。

  全班交流自己探索学习的情况。

  师:“1立方厘米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方厘米?”

  师:“1立方分米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方分米?”

  师:“1立方米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方米?”

  师:“1立方米,大家比划起来有一定的困难,我们可以一起来做。我这儿有三把米尺,我让几个同学和我一起,用这几把尺借助教室的一个墙角共同来做一个1立方米的空间。”

  师:“1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”

  师:“大家不站不知道,现在我们的同学进去了,发现没有,1立方米的空间还真不小,整整一个小组的人都能挤进去,大家明白1立方米了吗?现在大家再估一估1立方米的空间可放多少物品?”

  设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是必要的。〕

  师:“你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”

  学生交流尝试用体积单位描述身边物体的大小。

  三、引导学生反思整理,形成体积概念。

  师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?你还想知道有关体积的哪些知识?在今天的学习中,你最感兴趣的学习活动是什么?”

  设计意图:引导学生进行反思性学习应该引起教师的关注,在教学过程中,除了让学生经历探索新知的过程,还应关学生对自己学习过程中的回顾和反思,这一环节缺失的课是不完整的课。反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕

  四、启发课后观察操作,深化巩固课堂知识,培养学生自主学习意识和能力。

  师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”

  师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”

  设计意图:将学生的学习从课堂引到课外,由他主学习转到自主学习应该是教师教学的一种境界,是教师终身追求的目标。有效的教学需要我们在设计中去预设,在实践中去尝试。

《体积单位》教学设计9

  【教学内容】

  体积单位间的进率(课本第34—35页内容)。

  【教学目标】

  1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。

  2、使学生学会用名数的改写解决一些简单的实际问题。

  3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。

  【重点难点】

  掌握名数的改写方法。

  【复习导入】

  1、填一填。

  1米=( )分米

  1分米=( )厘米 1平方米=( )平方分米

  1平方分米=( )平方厘米

  2、说一说常用的体积单位有哪些?

  【新课讲授】

  1、学习体积单位间的进率。

  (1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?

  (2)学生读题,理解题意。

  (3)老师出示棱长为1dm的正方体模型。

  提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)

  (4)计算。

  请学生想一想,根据正方体体积的`计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

  老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3

  (5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

  (6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。

  老师板书:1立方米=1000立方分米

  (7)观察板书内容。

  想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。

  2、体积单位,面积单位,长度单位的比较。

  (1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。

  (2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

  (3)体积

  单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

  3、学习体积单位名数的改写。

  (1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)

  (2)学习教材第35页的例3。

  板书:(1)3、8m3是多少立方分米?

  (2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。

  板书:3、8m3=(3800)dm3

  2400cm3=(2、4)dm3 想: 1m3 =( )dm3

  想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)

  【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。

  【课堂小结】

  今天我们学习了哪些内容?你有什么收获?

  【板书设计】

  体积单位间的进率 长度单位:1米=(10)分米

  1分米=(10)厘米 面积单位:1平方米=(100)平方分米

  1平方分米=(100)平方厘米 体积单位:1立方米=(1000)立方分米

  1立方分米=(1000)立方厘米

《体积单位》教学设计10

  教材分析:

  这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

  教学目标:

  1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

  2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

  3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

  教学准备:

  棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  教学过程:

  一、 复习导入

  1、教师提问:

  (1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

  (2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

  (3)我们认识的体积单位有哪些?

  板书:立方米 立方分米 立方厘米

  提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

  【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

  二、自主探索 验证猜测

  1、教学例11。

  (1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

  (2) 提问:这两个正方体的体积是否相等?你是怎样想的?

  (引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

  (3) 用图中给出的数据分别计算它们的体积。

  学生分别算一算,然后在班内交流:

  棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

  棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

  (4) 根据它们的体积相等,可以得出怎样的结论?

  1立方分米=1000立方厘米(板书:=)

  (5) 谁来说一说,为什么1立方分米=1000立方厘米?

  2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

  学生在小组里讨论。(板书:立方米=1000立方分米)

  班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?

  引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

  3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

  【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

  三、巩固深化

  1、 出示书第30页的“练一练”。

  学生先独立完成。

  交流你是怎样想的。

  小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

  【评析:突出学生的独立思考和概括能力的培养.体积单位名数的'改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】

  2、 出示练习七第1题。

  学生独立完成表格。

  班内交流:说说长度、面积和体积单位有什么联系?

  而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

  3、 出示练习七的第2题。

  学生先独立完成。

  交流:你是怎样想的。

  指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

  4、 出示练习七的第3题。

  学生独立完成。

  交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

  5、 出示练习七的第4题。

  学生独立完成后集体交流。

  【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计11

  教学目标

  知识目标

  使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。

  能力目标

  能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。

  情感目标

  培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。

  重点

  体积单位的进率。

  难点

  体积单位的进率的化聚。

  教学过程

  一、复习引入

  1.填空:

  ①长方体体积=();

  ②正方体体积=()。

  ③常用的体积单位有()、()、();

  师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

  合作探究

  二、课程内容

  1.体积单位间的进率。

  (1)出示:1个棱长是1分米的正方体木块。

  图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?

  提问:

  ①当正方体的棱长是1分米时,它的体积是多少?

  ②当正方体的棱长是10厘米时,它的体积是多少?

  ③而1分米是多少厘米?1立方分米等于多少立方厘米?

  小组合作填表:

  《体积单位间的进率》教学设计

  小组汇报结论:1立方分米=1000立方厘米

  同理得出:1立方米=1000立方分米

  小结:相邻两个体积单位之间的进率都是1000。

  (2)将长度单位、面积单位、体积单位加以比较:

  先让学生填后并比较这三类单位相邻两个单位间的`进率有什么不同?为什么?

  (3)学习体积单位名数的改写。

  思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

  ②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

  出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?

  写成如下形式:

  3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米

  ⒊出示例4:看见你得到哪些信息?

  ⑴这个包装箱的体积是多少?

  V=50×30×40

  =60000cm3

  =60dm3

  =0.06m3

  ⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

  如果出现这样答,你必须选择那个答案?

  答:这个牛奶包装箱的体积是m3。

  ⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。

  拓展应用

  一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

  总结

  小结今天学习的内容。

  作业布置

  在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

  板书设计

  体积单位间的进率

  1立方分米=1000立方厘米

  1立方米=1000立方分米

《体积单位》教学设计12

  教材分析:本节课是在学生已经掌握了长方体和正方体体积计算方法的基础上进行教学的,主要是让学生认识体积、容积单位的进率。教材以里放立方分米和立方厘米为例,引导学生通过实际操作,结合实际模型认识和理解立方分米和立方厘米之间的进率。通过图示引导学生通过计算正方体的体积推出1立方分米=1000立方厘米,再仿照这种方法自己推出1立方米=1000立方分米。通过教学体积单位名数的变换,和在解答实际问题的过程中的运用,发展学生的应用意识。

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、引导学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点:观察、操作中会进行体积、容积单位之间的换算。

  教学难点:体积、容积单位之间的换算

  教法和学法:教法和学法是一个统一的整体,教师的“教”应适应学生的“学”,而学生的学又离不开教师的指导。教学方法应当渗透在教学过程之中,要符合知识的科学性,还要适合学生的认识规律,才能使学生理解并掌握知识。

  本节课教学从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。使学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决问题奠定了基础

  1、要有充分的直观操作。

  学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。

  2、启发学生独立思考。

  学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。

  3、讲练结合。

  4、充分运用知识的迁移规律,引导学生掌握新知识。教学准备:课件

  教学过程:

  一、复习导入

  师:

  1、常见的长度单位有哪些?相邻的两个长度单位间的进率是多少?

  2、常见的长度面积单位有哪些?相邻的两个面积单位间的进率是多少?

  3、我们学习的体积单位有哪些?

  提问:你能猜出相邻体积单位间的进率是多少?引出课题。

  二、自主探索验证猜测

  1、你有办法证明你的猜想或推论吗?

  (学生独立或小组讨论推导,自主探究相邻体积单位之间的进率,教师巡视,加以指导)

  2、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)

  ①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。

  ②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。

  (电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)

  ③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。

  ③口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米

  4、提问:用同样的.方法,你能推算出1立方米等于多少立方分米吗?

  ①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。(板书:1立方米=1000立方分米)

  ②口头回答:

  2立方米=?立方分米。

  9000立方分米=?立方米

  5、补全表格,继续填写:

  单位名称

  相邻两个单位间的进率

  长度

  面积

  体积

  ①总结体积单位以及它们之间的进率

  ②说说它们分别是计量物体的什么的?

  ③怎么来记忆它们相邻单位之间的进率?

  三、巩固深化

  1、辨别

  有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米

  他换算得对吗?

  (引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)

  2、出示书第30页的“练一练”和第31页的第3题。

  学生先独立完成。交流你是怎样想的。

  小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

  3、出示练习七的第2题。

  学生先独立完成。交流:想提醒自己注意什么?

  指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

  4、出示练习七的第4题。

  学生独立完成后集体交流,进一步明确1升=立方分米,1毫升=1立方厘米

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  【板书设计】

  体积单位的换算1分米3 = 1000厘米3 1升= 1000毫升1米3 = 1000分米3 1m3 = 1000 dm3

  【教学反思】

  教学中紧扣本节课的教学内容,创设与本节的学习内容密切相关的教学情境。要把把情境的创设、旧知的复习和新知的引入有机地融合在一起,显得自然朴实,真实有效。

  掌握体积单位间的进率是本节课的重点,理解进率和建立相应的空间观念是教学的难点。教学站在新的课程标准的高度,从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。同时,把课件的演示、学具的观察与摆一摆,数一数紧密的结合,学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决奠定了基础。

  本节课注重要从学生已有的数学知识为基础,在旧知识的复习中趣味引入,在知识和情感态度两个方面,为新的认知结构的建构奠定了基础;在新知识的学习中,学生在感知中猜想,在观察与计算中验证,在独立思考和小组合作的过程中完成构建,学生学得积极、主动。同时,对课件的使用简洁明了,体现了常态下的小学数学课堂教学。

《体积单位》教学设计13

  教材分析:

  这部分内容是在学生已经掌握了长方体和正方体体积的计算方法和认识了体积单位的基础上举行教学的。教材通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系,并通过图示,引导学生推出体积单位之间的进率。

  教学方法:

  针对以上内容,我准备通过学生的计算、比较、分析、归纳来得出相邻体积单位之间的进率,突出学生的自主探索学习。

  教学目标:

  (1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。

  (2)过程与方法目标:在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。

  (3)情感与态度目标:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。

  教学重点:

  使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。

  教学难点:

  通过计算、比较、分析、归纳,使学生能探究出相邻体积单位间的进率是1000。

  教学过程:

  一、复习导入:

  1、复习一般长度、面积单位间的进率:

  1米=分米1分米=厘米

  1平方米=平方分米1平方分米=平方厘米

  2、相邻长度单位、面积单位间的进率是多少?我们在学习面积单位间进率的时候是通过怎样的方法来学习的?

  学生相互说说。

  3、我们已经认识了哪些体积单位?它们分别是怎样定义的?

  学生回答问题。

  二、探究新知:

  1、出示一个体积1立方分米和一个体积1立方厘米的模型,提问:1立方分米里有多少个1立方厘米呢?

  2、师生研究:1立方分米是一个棱长1分米的正方体的.大小。同样一个正方体,把1分米改写成10厘米,那么它的体积是多少立方厘米呢?

  学生计算:=1000(立方厘米)

  比较:同样一个正方体,它的体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?

  (学生比较总结出:1立方分米=1000立方厘米)

  3、用同样的方法总结出:1立方米=1000立方分米

  4、你能用一句简洁的话来概括吗?

  (师生交流总结:每相邻两个体积单位之间的进率是1000。)

  5、比较相邻长度单位、面积单位、体积单位之间的进率关系:

  名称图形类型进率

  长度单位平面图形10

  面积单位平面图形1010=100

  体积单位立体图形=1000

  通过比较,使学生进一步明确体积单位间的进率的探索方法,加强学生的理解。

  三、解决问题:

  1、我们已经学习了小数和复名数,从高级单位、低级单位之间的转化是怎样进行的?

  (学生相互说说)

  2、已知:1立方分米=1000立方厘米,1立方米=1000立方分米,那么:1立方分米=立方米,1立方厘米=立方分米。

  3、教学例1、2。

  组织学生进行自主学习研究,集体交流解决的方法。

  (学生有了名数之间转换的方法,因此可以适当的突出学生学习的主体作用,让学生来交流解决问题,提高学生运用旧知识解决新问题的能力。)

  4、教学例3:

  组织学生先自主读题,并进行仔细审题,交流题目的意思。说出有哪些要注意的地方?

  适当培养学生的分析能力,养成仔细审题的良好习惯。

  学生独立解决可能有两种方法:

  (1)先算出用立方米作单位的体积,再改写成立方分米作单位。

  (2)先把米作单位的数改写成分米作单位的数,再计算出体积,就是立方分米作单位了。

  (对于这两种方法,组织学生进行比较,可以进一步验证相邻体积单位间的进率是1000,并发展和提高学生解决问题的能力。)

  四、巩固练习:

  1、合理搭配:

  5平方米500立方分米6780立方厘米立方米

  5立方分米500平方分米8500立方分米

  立方米立方米立方米立方分米

  2、判断题:

  (1)两个体积单位之间的进率是1000。

  (2)棱长6厘米的正方体的表面积和体积相等。

  (3)一个正方体的棱长扩大3倍,表面积和体积都扩大9倍。

  (4)平方分米与50立方厘米一样大。

  3、在括号里填上适当的单位名称:

  一个粉笔盒的体积约是。

  一台洗衣机的体积大约是340。

  摩托车每小时行约30。

  一张纸的面积约是6。

  4、选择:

  (1)、与立方分米相等的是。

  A:7500立方厘米

  B:立方米

  C:立方米

  (2)、正方体的棱长是a,表面积是,体积是。

  A:a2 B:6a2 C:a3

  (3)一块长方体钢材,长米,宽3分米,高2分米,体积是立方分米。

  A:2400立方厘米

  B:立方米

  C:24立方分米

  (4)一个长方体的盒子,长分米,底面积是16平方厘米,体积是立方厘米。

  A:8立方厘米B:80立方厘米C:立方分米

《体积单位》教学设计14

  教学目标:

  1 .使学生理解体积的概念,了解常用的体积单位,形成表象。

  2 .培养学生比较、观察的能力。

  3 .发展学生的空间观念。

  重点难点:

  使学生感知物体的体积,初步建立1 立方米、1 立方分米、1 立方厘米的大小。

  教学过程:

  一、认识体积(激趣导入)。

  1、“同学们,你们听过乌鸦喝水的故事吗?”(学生作答)老师播放“乌鸦喝水”的课件,提问:乌鸦是怎么喝到水的?(乌鸦把石头一粒一粒地衔到瓶子里,石头占了水的空间,所以把水挤出来了。)

  2、“石头真的占了水的空间吗?”(实验验证)

  拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生观察,发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。

  二、揭示体积

  出示下面的图,问:你们知道这些物体哪个占的空间大吗?

  手机 影碟机 电视

  学生回答后,说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书体积概念)

  三、列出体积单位。

  1、出示两个形状不同,体积相近的长方体。(单凭观察,难以比较)

  2、用多媒体将它们分成大小相同的小长方体后,学生很快就确切的说出:左边的长方体体积大于右边的长方体体积。(因为左边长方体有16 个小长方体,而右边的只有15 个)

  说明:所以要比较物体的体积大小,需要有一个统一的体积单位。我们知道长度单位是用线段表示的,面积单位是用正方形来表示的,那么体积单位应该用什么来表示呢?(用正方体来表示)。常用的'体积单位有立方厘米、立方分米、立方米。(板书)

  四、认识体积单位。

  1、“请你猜一猜1cm3、ldm3 、1m3,是多大的正方体?”

  讨论后让生看着实物共同小结:

  棱长是Icm 的正方体,体积是1cm3 (手指尖);

  棱长是ldm 的正方体,体积是ldm3(粉笔盒);

  棱长是l m 的正方体,体积是1 m3(一台洗衣机)。

  2、“要计算一个物体的体积,就要看这个物体中含有多少个体积单位。”请同学们用4 个1cm3 的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?( 4cm3 )为什么?(因为它是由4 个体积是1Cm3 的小正方体摆成的)

  五、课题练习:(略)

  教学反思:

  本节课,我从《乌鸦喝水》这个故事自然引入新课。借助1立方厘米、1立方分米、1立方米的直观教具,让生通过摸一摸、量一量、比一比,说一说等实践活动,亲身经历和体验体积单位。教学中,我注意把教材内容与生活实践相结合、动手操作与实验观察相结合,努力培养学生用数学的意识解决实际问题的能力和创新精神。

《体积单位》教学设计15

  这部分内容教学相邻体积单位间的进率,是在学生认识了体积单位,学习了长方体、正方体体积计算后,进行教学的。让学生根据进率进行相邻体积单位的换算。在教学中让学生通过计算,探索发现相邻两个体积单位间的进率。教材通过两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算他们的体积。根据体积单位的定义:棱长1分米的正方体,体积是1立方分米,第一个正方体的体积就是1立方分米。通过计算,棱长10厘米的正方体体积是1000立方厘米。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,放手让学生根据前面探索中得到的经验自主进行推算。

  [教学重点、难点]:体积单位间的进率和单位之间的互化。

  [教学目标]

  1、了解并掌握体积单位间的进率。

  2、理解并掌握体积高级单位与低级单位间的化和聚。

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

  [教学过程]

  一、知识准备

  1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)

  2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?

  3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。

  4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)

  板书:

  长度单位

  1米=10分米

  1分米=10厘米

  面积单位

  1平方米=100平方分米

  1平方分米=100平方厘米

  质量单位

  1吨=1000千克

  1千克=1000克

  液体体积单位

  1升=1000毫升

  5、猜想今天我们学习的相邻体积单位间的进率可能是多少?

  6、提炼猜想,为研究作好必要的准备。

  学生出现的猜想:1立方米=1000立方分米

  1立方分米=1000立方厘米

  二、实践探究、学习新知

  (一)探究立方分米与立方厘米间的进率

  1、指导学生分组进行探究,出示自学纲要:

  ①棱长1分米的.正方体的体积是多少?

  ②棱长10厘米的正方体的体积是多少?

  ③1立方分米与1000立方厘米,哪个大?为什么?

  2、学具提供:

  ①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。

  ②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。

  3、交流学习结果,分组汇报:

  因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米

  10厘米×10厘米×10厘米=1000立方厘米

  所以:1立方分米=1000立方厘米

  4、让学生在回顾一下思维的过程,再说说自己的理解。

  (二)独立探究立方米与立方分米之间的进率

  1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率

  2、用什么方法可以验证自己的想法是正确的呢?

  3、学生自己尝试解决问题

  4、交流各自的思维过程:

  棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)

  5、小结:相邻的两个体积单位之间的进率是1000。

  6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

  7、完成书上31页练习七的第1题

  让学生独立完成填表,让学生联系填表的过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。

  (三)完成书上30页练一练

  1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。

  2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。

  3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。

  三、解决实际问题,巩固所学方法

  1、完成31页第2题

  让学生先审题,观察这一组题目有什么特点?在解决的过程中要突出面积单位换算与体积单位换算的区别,还可以让学生认识到:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。

  2、完成31页第3题

  让学生独立完成这一题。说说自己的思考的过程。帮助学生巩固方法,形成技能。

  3、完成31页第4题

  让学生在练习中回顾升与毫升的关系,进一步掌握升、毫升与本单元所学的立方分米、立方厘米的关系。

  四、全课总结

  今天的学习中你有什么收获?学到了什么?还有哪些疑惑?

【《体积单位》教学设计】相关文章:

《体积和体积单位》教学设计06-09

体积和体积单位教学设计01-29

《体积单位》教学设计12-29

体积单位的换算教学设计06-06

体积单位换算教学设计07-07

《体积和体积单位》教学设计9篇06-09

(必备)体积单位的换算教学设计02-26

体积单位的进率教学设计04-14

《体积和体积单位》的优秀教学设计(精选13篇)01-07

【优秀】《体积和体积单位》教学设计10篇10-12