数学《反比例》教学设计
在教学工作者开展教学活动前,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?下面是小编收集整理的数学《反比例》教学设计,欢迎阅读,希望大家能够喜欢。
数学《反比例》教学设计1
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的.函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
数学《反比例》教学设计2
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的`图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
数学《反比例》教学设计3
教学内容:北师大版数学第十二册第二单元教材第24页反比例的教学内容 。
教学目标:
1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。
2 、培养学生的逻辑思维能力。
3、渗透数学源于生活的观点。
重点难点
1、通过具体问题认识成反比例的量。
2、掌握成反比例的量得变化规律及其特征。
教具准备: 课件
教学过程
一、复习铺垫
师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)
师:简单概括两个相关联的量成正比例的关键是什么?生答,强调:他们的比值(商)一定。
二、谈话引题
师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)
三、猜想激趣
师:既然正与反意义是相反的',请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。
四、验证归纳
师:1.研究情境(一)
让学生把汽车行驶的速度和时间的表填完整。
观察上表,思考下面的问题:
(1)表中有哪两种量?
(2)时间是怎样随着速度的变化而变化的?
(3)表中那个量没有变?
(4)写出三者的关系式
2.研究情境(二)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
3.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)
4.情境(三)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
五、课堂练习
1、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)圆柱体的体积一定,底面积和高。
(2)小林做10道数学题,已做的题和没有做的题。
(3)长方形的长一定,面积和宽。
(4)平行四边形面积一定,底和高。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
五、全课小结
今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?
六、作业:找一找生活中有哪些例子成反比例。
板书设计
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
数学《反比例》教学设计4
教学内容
教科书第58-59页例1,课堂活动及练习十三1-3题。
教学目标
1.使学生理解反比例的意义,能正确判断成反比例关系的量。
2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。
3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。
教学重点
引导学生正确理解反比例的意义。
教学难点
正确判断两种量是否成反比例。
教学过程
一、复习旧知,感受新知
情景游戏:对口令
(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。
表1买同样的面包
买的数量(个) 1 2 3 4 5……
总价(元) 2 4 6 8 10……
教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?
反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。
根据学生的回答板书,成正比例的量所具有的三个特征:
①两种相关联的量②变化有规律③一定的量
(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)
表2 30个苹果分给小朋友
小朋友的人数(人) 1 3 5 10……
每个小朋友分得个数(个)30 10 6 3……
从这个表中,你有什么发现?
反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……
提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?
教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。
二、对比探究,获取新知
1.感知几种不同的变化规律
(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。
表3 60名游客在井冈山游览
每组人数 3 5 6 15
组数 20 12 10 4
教师:谁来说说,你是怎样算每组人数和组数的?
抽几名学生说出自己的计算方法。
教师:从这个表中你发现了什么规律?
反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……
(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。
表4打一篇稿子
每分打字(个) 120 100 75 50
所需时间(分) 25 30 40 60
教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。
(3)第二天,导游将带领这批游客,行一段路程。
表5行一段路程
已行的路程(km) 1 2 3 4
剩下的路程(km) 19 18 17 16
填这个表时,你是怎样想的?集体订正。
表6行一段路程
路程(km) 12 20 24 36
时间(时) 3 5 6 9
集体订正。
2.分类区别,概括意义
(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。
教师巡视,听取各小组意见,加强指导。
(2)汇报交流
反馈1:表1,6分一类,表2,3,4,5分一类。
反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。
教师:为什么这样分类?
引导学生说出:表1,6成正比例分一类;不成正比例的`表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。
教师:现在我们一起来找出表2,3,4的共同特征。
学生1:每个表中的两种量都相关联。(板书:相关联)
学生2:一种量变化另一种量也随着变化。
学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。
学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……
教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)
学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)
正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
(3)概括得出反比例的意义
教师根据学生的回答,引导学生概括得出:
两种相关联的量。
一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
两种量相对应的两个数的乘积是一定的。
这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?
(揭示课题:反比例的意义)
像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。
4.举例
抽生说一说生活中还有哪些成反比例的量。
学生1:路程一定,所行的时间与速
5.区分
表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?
引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。
三、直观操作,加深理解
1、完成第60页课堂活动1题
教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?
2、完成第60页课堂活动2题
3、完成第61页课堂活动3题
四、巩固练习,深化认识
练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。
五、课堂总结
今天,我们一起学习了什么?你有什么收获?
数学《反比例》教学设计5
[教材内容]
义务教育课程标准实验教科书数学六年级下册第三单元第60页例6用反比例解决问题。
[教学对象]
小学六年级学生
[教材分析]
这类问题学生在前面实际上已经接触过,只是用归总的方法来解答,这里主要学习用反比例知识来解答。前一个例题是用正比例解决问题,学生已基本掌握用正比例解决问题的思路与方法。用正、反比例知识解答正、反比例的问题的关键是使学生能够正确找出两种相关联的量,判断它们成哪种比例,然后根据正比例或反比例的意义列出方程。所以在教学前可以先给出一些数量关系,让学生判断成什么比例,依据什么判断的。本节课还要注意正、反比例解决问题的对比。本节课的学习能使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,巩固和加深对所学简易方程的认识,也为中学数学应用比例知识解决一些问题做较好的准备。
[学情分析]
这类问题学生在以前学过,都会用归总的方法解答。在本单元的学习中,学生也学会了判断两种相关联的量成哪种比例,前一个例题中也学习了用正比例解决问题。但学生对于判断成正、反比例的量的知识掌握得不够好,主要是部分学生对数量关系的理解能力比较弱。当用正、反比例解决问题同时出现时就会有的学生不理解,容易混淆。有的学生也会受比例的知识的影响列出多种比例的式子从而对这部分知识理解得有点乱。所以在教学中可以通过以旧引新,运用知识迁移,利用学生归总方法的知识掌握得较好的优势来学习用反例解决问题的知识,相信会有较好的效果。
[课类型]新授课
[学习目标]
1.能正确判断应用题中涉及的量成什么比例关系,能利用反比例的意义正确解答应用题。
2.经历用比例方法解决问题的过程,体验解决问题的策略,提高解决问题的能力,渗透数学模型思想。
3.体验解决问题的成功喜悦。
[学习重点]能利用反比例的意义正确解答应用题。
[学习难点]能正确利用反比例的关系列出含有未知数的等式。
[学习方法]自主学习、探究学习、合作交流
[教学手段]多媒体课件、导学案
[学习过程]
一、自学。
(一)忆一忆。(约3分钟)
1.判断下面各题中的两个量成什么比例。
(1)速度一定,路程和时间成( )比例。
(2)路程一定,速度和时间成( )比例。
(3)总价一定,买水果的数量和总单价成( )比例。
(4)运货的总量一定,汽车的载重量和运的次数成( )比例。
2.在横线上补充问题,再回答下面的问题:
一批书每包20本,捆了18包。 ?
① 题目已知哪两个相关联的量?这两个相关的量有什么数量关系?
成什么比例关系?已知这两个条件可以求出什么?
② (用算术法)列式计算:
[设计意图:复习找两个相关联的量及判断这两个量成哪种比例关系,分析已知条件的数量关系,用归总的方法解决问题,为本节学习用反比例解决问题作铺垫作用。引出生活中的数学问题,使学生体会数学在生活中的应用。]
(二)学一学。(课中约3分钟)
1.课前预习:看书P60例6。
例6
张叔叔 李阿姨
(1)题中已知 , 求 。
(2)试一试:用我们以前学过的方法解决问题:
(3)这样的问题还可以用比例的方法解决:
① 题中有哪两种相关联的量?
② 这两种量之间存在什么数量关系?
③ 这两种量成什么比例关系?你是根据什么判断的?
答:因为( )一定,所以题中的( )和( )成( )比例,也就是说,( )和( )的( )相等。
④ 根据这样的比例关系,你能列出等式吗? ⑤ 试一试用比例解决问题:(温馨提示:注意格式)
⑥ 怎样检验?
2.课中自学(3分钟)
(1)看书P60例6。
(2)想一想:题中有哪两种相关联的量?成什么比例关系?有什么相等关系?根
据这种比例的意义列出怎样的方程?
(3)把你做的方法与书上例题比一比,你的解答和格式对吗?
(三)归一归:
1.比一比例5和例6:有什么相同点和不同点?
2.归一归:用比例解决问题的一般步骤是怎样的?
[设计意图:数学新课程标准指出“学生学习是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学生
数学的重要方式”。以学案导学,引导学生分析数量关系,回顾旧知,寻求解决问题的思路与方法。再引导学生找出题中相关联的量及判断成哪种比例关系,以前一个例题学过的用正比例解决问题的经验自主探究,寻求用反比例解决问题的思路与方法。引导学生学会自主学习,充分发挥学生学习的主动性。]
二、自教。
(一)小组交流:(约3分钟)
交流课前预习部分,小组长注意了解同学们的主要疑问是什么?有错的同学错在哪?
(二)全班展示:(约10分钟)
1.展示例6用以前学过的方法解答的思路。
学生点评、质疑,教师评价小结:已知每份数和份数可以用乘法求出总数,两种包装方法的总数不变,先用乘法求出总数再用除法求出另一种包装方法的包数。
2.展示用比例方法解决问题的思路:
学生点评、质疑,教师小结:每份数和份数存在的数量关系是每份数×份数=总数,总数不变,即积一定,根据反比例的意义列出方程。
小结:解题的关键是什么?答:找出两个相关联的量,判断是什么比例,根据比例的意义列出方程。
3.对比例5和例6找出用正、反比例解决问题的一般步骤与异同。(5分钟) 追问:用正比例解决问题与用反比例解决问题有什么相同点和不同点?
用正、反比例解决问题的一般步骤是怎样的?
(三)同步检测:(用比例方法解答)(约2分钟)
学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?
小结方法:找出两个相关联的量,判断什么比例列出方程。
[设计意图:数学新课程标准指出“学生学习是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是
学生数学的重要方式”。引导学生通过小组交流、全班交流的合作学习、探究学习的'方式,经历“尝试——理解——总结——应用”的过程,建立数学模型的过程,掌握用比例知识解决问题的思路与方法,为学生形成有序的思考方式起潜移默化的作用。在教学中教师运用已学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求用正、反比例解决问题的一般方法,培养学生的应用意识,提高学生解决问题的能力,从而渗透了数学建模思想。
通过展示交流提高学生的自信心与自学、表达能力,以追问交流的方式引导学生深入思考,渗透解决问题的一般步骤与策略,发展学生的思维能力。]
三、自编:(5分钟)
编两组对应的成反比例的量,再进行互评、互改。
[设计意图:开展一对一帮扶学习,发挥小组长的作用,对学生进行及时的反馈和指导,以“兵教兵”的方式关注课堂中的每一个学生。目的是使每一个学生都能准确判断成反比例的量。]
四、自演。(约10分钟)
1.判断下列各题的两种量成什么比例。
(1)从甲地到乙地的路程一定,每小时所走的路程和所用的时间。( )
(2)全班的总人数一定,列队时每行的人数和行数。 ( )
(3)铺地的面积一定,每块砖的面积和块数。 ( )
2.有一堆煤,每天用15吨,可以用40天,如果这堆煤要用60天,每天只用多少吨?(用比例方法和算术法两种方法解答)
3.比一比:两题有什么相同点和不同点?
(1)一个客厅,用9cm2的方砖铺地,需要112块,如果改用16cm2的方砖铺地,需要多少块?
(2)给一间房子铺地,如果用边长6dm的方砖,需要80块。如果改用8dm的方
砖需要多少块?
4.拓展练习:
一辆汽车从甲地到乙地每小时行60千米,4小时可以到达。实际前2小时行100千米,照这样计算,行完全程共需多少小时?(用正反比例两种方法解答)
[设计意图:设计判断题的目的是为了提高学生判断两个相关联的量成哪种比例关系的能力;设计解决问题要求用两种方法解决与对比练习目的是检测学生是否能正确地用反比例的知识解决简单的实际问题和能否掌握新旧知识的联系与区别形成知识系统。设计拓展练习的目的是检测学生能否掌握用正、反比例解决问题的联系与区别,提高学生解决问题的能力,发展学生的思维。]
五、反思总结。(约3分钟)
独立思考——小组交流——全班交流:
本节课你学到了什么?用比例解决问题的解题关键是什么?解题的步骤是什么?用反比例解决问题与用正比例解决问题有什么相同点和不同点?
全课总结:用比例知识解答应用题的关键,是正确找出题中的两( )的量,并判断这两种相关联的量成( )比例关系,然后根据( )比例的意义列出比例。
[设计意图:课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。]
六、达标检测。(约2分钟)
一间房子,用边长5dm的方砖铺地,要108块。如果改用边长6dm的方砖铺地,需要多少块?
[设计意图:检测学生对本节基础知识的掌握情况,起当堂反馈的作用。]
七、板书设计:用反比例解决问题 反比例
每包20本,要捆18包。 (总量一定)
每包30本,要捆多少包?
相等关系:每包30本×包数=每包20本×18包 算术法:
解:设要捆χ包。 20×18÷30
30χ=20×18 =360÷30
χ=12 =12(包)
答:要捆12包。
[教学反思]
1.导学案的设计能发挥导学的作用。
以学案导学,设计具体的学习内容与问题,引导学生去分析问题、独立思考、寻求解决问题的策略,能提高学生的自学能力,自主建立用比例解决问题的知识体系,能有效地发挥导学的作用。
2.能引导学生自主探索、合作交流。
新课程标准中指出:“有效的数学学习活动不能单纯地依赖模仿和记忆。动手实践、自主探索与合作交流是学生自主学习的重要方式。”在教学中,教师向学生提供充分从事数学活动的机会,使学生在自主探索与合作交流、全班大展示的过程中,自始自终让学生参与体验解决问题的全过程。注意引导学生围绕解决问题的核心进行探索、思考,取得了良好的教学效果。学生通过自主探究和合作交流,根据教师设问与引导开展深入思考与讨论,很快掌握了用比例解决问题的方法。
3. 相信学生,让小组合作学习发挥小课堂的作用。
“相信学生,利用学生,放手发动学生,发展学生,课堂因互动而精彩,学生因自主而发展”这些都是杜郎口中学提倡的学生观。我放手让学生去自主探索、合作交流,在自学、自教的环节处理中,我指导小组长进行互教与辅导,引导小组长充当小老师,把每个小组看作一个小课堂,而组长就是这个小课堂中的老师,学生在互动中学习,在互动中发展,如班上逐渐显示出一些优秀的小组和优秀的小组长,他们能引导本组同学去思考、去学习,指导方法,发现组员在学习中存在的问题进行分析与辅导,整个学习过程中学生认真参与、投入学习,在这些小组中,整个小组的同学能忘我地投入学习,做到了全程参与。
4.在解决问题时,有意识地引导学生运用数学思想方法。
渗透数学思想方法旨在使学生的数学思维经历从形象思维到抽象思维再到逻辑思维的发展过程,实现其质的变化,要让学生沿着“抽象”和“应用”两个方面进行渗透,将已学的思想方法转化为自己头脑中牢固的认知结构,并能在不断的归属同化中得以发展,提高学生运用数学思想方法解决实际问题的能力。在本节教学中教师可运用已学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求用正、反比例解决问题的一般方法,培养学生的应用意识,提高学生解决问题的能力。
5.不足之处:
在实际的教学中,让学生讲述理由、叙述解题思路的机会还不够,面不够广,从而造成部分学生只是模仿例题列比例解答,但解答的依据却说不清,也有部分学生对题中如何寻找相关联的量和正确判断是哪种比例关系不熟练。在今后的解决问题教学中仍要加强解决问题的思路与策略的渗透,还要加强训练学生表述解题思路与方法的能力。
数学《反比例》教学设计6
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一复习
判断下面每题中的两种量是成正比例还是成反比例?
1.速度一定,路程和时间。
2.正方形的边长和它的.面积。
3.生产总时间一定,生产一个零件所用时间和零件总数。
4.中国儿童报的订数和钱数。
二引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米4080160200320
时间/时12458
表二
速度/每时行多少千米12090604030
时间/时346912
1.说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
师板书:速度时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3.比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式XY=K(一定)
4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
数学《反比例》教学设计7
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点:掌握从实际问题中建构反比例函数模型.
教学难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等).
2.学生准备:(1)复习已学过的反比例函数的图象和性质,(2)预习本节课的内容,尝试收集有关本节课的情境资料.
教学过程
一、创设问题情境,引入新课
复习:反比例函数图象有哪些性质?
反比例函数 y?k
x 是由两支曲线组成,
当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;
当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.
二、讲授新课
[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?
(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的.性质解决实际问题.
师生行为:
先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动.
在此活动中,教师有重点关注:
①能否从实际问题中抽象出函数模型;
②能否利用函数模型解释实际问题中的现象;
③能否积极主动的阐述自己的见解.
生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=
所以储存室的底面积S是其深度d的反比例函数.
104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d
对应,反过来,知道S的一个值,也可求出d的值.
题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd
即施工队施工时应该向下挖进20米.
生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?
104 根据S=,把d=15代入此式子,得 d
S=104 ≈666.67. 15104. d
当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要. 师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,
三、巩固练习
1、(基础题)已知某矩形的面积为20cm2:
(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,
求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
设计意图:
让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望.
师生行为:
由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题.
生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.
13000 所以,S·d=1000, S= . 3d
(2)根据题意把S=100cm2代入S=30003000中,得 100= .d=30(cm). dd
所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.
3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.
(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?
(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?
四、小结
1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。
2、利用反比例函数解决实际问题的关键:建立反比例函数模型.
五、布置作业
P54—55.第2题、第5题
六、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.
数学《反比例》教学设计8
教学内容:教材14~16页例4、例5、例6,24页做一做,练习三4、5、6、7题。
素质教育目标
(一)知识教学点
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
(二)能力训练点
1.培养学生的抽象概括能力。
2.培养学生的判断推理能力。
(三)德育渗透点
通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。
教具学具准备:投影仪、投影片。
教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:X×Y=K(一定)
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
教学步骤
一、铺垫孕伏
1.下表中的两种量是不是成正比例?为什么?
2.回忆:成正比例的量有什么特征?
二、探究新知
1.引入新课。我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征——成反比例的量。(板书:成反比例的量)
2.教学例4
(1)出示例4,提出观察思考要求:(投影出示)
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(2)学生讨论交流。
(3)引导学生回答:
①表中的两种量是每小时加工的数量和所需的加工时间。
(板书:每小时加工数加工时间)
②每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
③每两个相对应的数的乘积都是600)。
教师适时点拨:
①想一想:每小时加工的数量和所需的加工时间是两种相关联的量吗?为什么?
(引导学生回答:是两种相关联的量,每小时加工的数量变化,加工时间也随着变化。同时板书。)
②议一议:这两种量的变化有什么规律吗?
(教师可以操作:一个竹筒内放30根筷子,每次拿3根,10次拿完;每次拿5根,6次拿完;每次拿6根,5次拿完;每次拿10根,3次拿完。想想:什么变了?什么没变?有什么规律吗?)
(订正时,随学生回答,板书:积一定)
③教师问:这个600实际上就是什么?(板书:零件总数(一定))
师指板书问:每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?(板书:×=)
(4)小结:通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
3.教学例5
(1)投影出示例5,根据题意,学生口述填表。
(2)观察上表,你发现了什么?引导学生回答下列问题:
①表中有哪两种量?(板书:每本页数装订本数)是相关联的量吗?
②装订的本数是怎样随着每本的页数变化的?
③表中的'两种量有什么变化规律?
(3)订正时板书:在原板书“每小时加工数变化,加工时间也随着变化”的“每小时加工数”下板书“每本页数”,在“加工时间”下板书“装订本数”。
(4)教师问:这个积600实际上是什么?(板书:纸的总页数(一定))指板书问:每本页数、装订本数和纸的总页数之间有什么关系?(板书:×=)
4.比较例4和例5,概括反比例的意义
(1)请你比较例4和例5,它们有什么相同点?(学生互相议论一下)
(2)学生回答:
①都有两种相关联的量。
②都是一种量变化,另一种量也随着变化。
(板书:用“一种量”盖住“每小时加工数”和“每本页数”;用“另一种量”盖住“加工时间”和“装订本数”。)
③都是两种量中相对应的两个数的积一定。
(3)师小结:像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
(4)通过观察比较,谁能说说什么样的两种量叫做成反比例的量?
(找2~3名学生说,教师随时把板书补充完整)
5.教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且,每小时加工的数量和所需的加工时间的积,也就是零件总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的量。
议一议:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?
6.教师:如果用字母x和y表示两种相关联的量,用k表示它们的积一定,(随时板书:xyk(一定))反比例关系可以用一个什么样的式子表示?(板书:×=)
7.教学例6
(1)出示例6
(2)学生交流。
(3)学生汇报,教师点拨。
①每天播种的公顷数和要用的天数是不是相关联的量?
②每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的总公顷数(一定))
③播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?(板书:每天播种的公顷数和要用的天数成反比例。随着问为什么,板书:因为,所以)
想一想,播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?(组织学生讨论)
8.完成做一做
三、巩固发展
1.想一想:成反比例的量应具备什么条件?
2.练习三第4题
3.判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
4.你能举一个反比例的例子吗?
四、全课小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
五、布置作业练习三5题、6题。
【数学《反比例》教学设计】相关文章:
《反比例》教学设计05-11
《反比例函数》教学设计07-05
反比例函数的教学设计08-18
反比例函数教学设计03-07
(热)反比例函数教学设计12-12
反比例函数教学设计11篇05-22
正比例和反比例教学设计12-06
数学反比例教案03-25
反比例函数的图象与性质教学设计范文10-06
数学教学教学设计04-15