《1.1二次函数》教学设计

时间:2024-10-01 08:38:34 教学资源 投诉 投稿
  • 相关推荐

《1.1二次函数》教学设计

  作为一名老师,通常需要用到教学设计来辅助教学,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么问题来了,教学设计应该怎么写?下面是小编整理的《1.1二次函数》教学设计,仅供参考,欢迎大家阅读。

《1.1二次函数》教学设计

  教材分析

  本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。

  本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。

  按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:

  1、知识与技能

  通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。

  2、过程与方法

  通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。

  3、情感态度价值观

  (1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。

  (2)在知识教学中体会数学知识的应用价值。

  本节课的教学重点是“探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。

  实验研究:

  作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:

  (一)、利用二次函数解决实际问题的易错点:

  ①题意不清,信息处理不当。

  ②选用哪种函数模型解题,判断不清。

  ③忽视取值范围的确定,忽视图象的正确画法。

  ④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。

  (二)、解决问题的突破点:

  ①反复读题,理解清楚题意,对模糊的信息要反复比较。

  ②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。

  ③注意实际问题对自变量取值范围的影响,进而对函数图象的影响。

  ④注意检验,养成良好的解题习惯。

  因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。

  教学目标

  1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。

  2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。

  3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。

  教学重点与难点

  教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。

  教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。

  学生学情分析

  我所代班级的学生是高一新生,他们在初中已学过二次函数的简单性质与图像,知道二次函数在二次函数最值教学设计时在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。

  教法分析

  根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。

  教学过程

  (一)复习旧知

  回忆二次函数的图像与性质:

  1.图像:

  2.定义域:

  3.单调性:

  4.最值:

  【设计意图】复习旧知,引入新课。

  (二)自主探究

  探究1:定轴定区间最值问题

  分别在下列范围内求函数f(x)=x2-2x-3的最值:

  规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。

  【设计意图】

  通过探究

  1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。

  (三)合作探究(含参二次函数最值求解问题)

  探究2:动轴定区间最值问题

  求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。

  【设计意图】

  通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。

  变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。

  【设计意图】

  通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。

  规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,注意做到“不重不漏”。

  探究3:定轴动区间最值问题

  求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。

  【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。

  变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.

  【设计意图】

  通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。

  规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。

  (四)知识小结

  本节课研究了二次函数的三类最值问题:

  (1)定轴定区间最值问题;

  (2)动轴定区间最值问题;

  (3)定轴动区间最值问题.

  核心思想是判断对称轴与区间的相对位置,应用数形结合、分类讨论思想求出最值。

  【设计意图】

  归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。

  (五)结束语

  数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!

  (六)课后作业

  1.二次函数最值教学设计1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。

  2.求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。

  3.求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。

  【设计意图】

  学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。

【《1.1二次函数》教学设计】相关文章:

二次函数的教学设计04-01

二次函数教学反思02-13

函数教学设计07-28

二次函数图像教学反思12-01

数学二次函数教学反思04-22

二次函数与一元二次方程教学设计(精选5篇)09-28

对数函数教学设计12-06

《幂函数》教学设计【优】01-20

函数的单调性教学设计12-13

《二次函数》教学反思范文(通用10篇)10-20