[精华]《有理数》教学设计
作为一名人民教师,通常会被要求编写教学设计,教学设计是一个系统化规划教学系统的过程。那么教学设计应该怎么写才合适呢?以下是小编精心整理的《有理数》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《有理数》教学设计1
《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:
1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用
教学难点:异号两数相加
教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:
一、复习回顾
1、一个不为零的有理数可以看做是由哪两部分组成的?
2、比较下列各组数绝对值哪个大?
①-22与30;②-与;③-4.5和6
3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?
(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)
二、新知探究
1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的'实际意义。
2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?
4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)
三、运用法则
例:计算
(1)(+2)+(-11) (2)(-12)+(+12) (3)(+20)+(+12)
(4)(- )+(- ) (5)(-3.4)+(+4.3) (6)(-5.9)+0
思维过程:一“看”二“定”三“和差”
(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)
四、巩固法则
1、开火车游戏。
第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。
2、填数游戏。
将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0
3、思考:两个有理数相加,和一定大于每一个加数吗?
(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)
五、小结
加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。
(用一段“顺口溜”识记加法法则)
六、作业设计
1、练习完成在书上,习题1~2完成在作业本上。
2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。
五、小结:用一段“顺口溜”识记加法法则。
反思:“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。
对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。对于接下来将算式按加数分类,探究和的符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。
再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。
《有理数》教学设计2
一、教材分析
有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。
二、学情分析
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标 (核心素养立意)
1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,
(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点
重点:有理数的乘法法则。
难点:有理数乘法的符号法则
五、教学策略
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)
(一)复习导入 创设情境
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动 探究新知
要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。 通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)
这样设计的目的是(1)构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。(2)通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。
(三)分析法则 掌握实质
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
(四)解决问题 综合运用
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
(五)体验成功 享受快乐
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的'要求。
(六)总结收获 畅谈体会
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。 及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
(七)布置作业 巩固深化
七、课后反思
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!
《有理数》教学设计3
教学目标
1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:了解有理数加法的意义,会根据有理数加法进行运算。
难点:有理数加法中的异号两数的加法运算。
教学过程
教学活动
师生活动
设计意图
一、问题情境
小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?
5+3=8
如果小明先向西运动5m,再向东运动3m,两次运动的'结果是什么?
(-5)+(-3)=-8
如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?
5+(-3)=2
足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?
二、知识点拔:
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。
三、例题指导
例1 计算
(1) (-3)+(-9)
(2) (-4.7)+3.9
解:(1)(-3)+(-9)=-(3+9)
=-12
(2)(-4.7)+3.9=-(4.7-3.9)
=-0.8
四、练习巩固:P22 1、2。
五、小结:
这节课我们学习了哪些知识?
六、作业:
习题1.3 1、8、12题
《有理数》教学设计4
【教学目标】
1.会进行有理数加法运算.
2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.
3.会将有理数的减法运算转换成加法运算.
4.会进行加减混合运算.
此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体
会“化归”的思想方法.
【教学过程设计建议(第一课时)】
1.情境创设
除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:
第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?
如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还
可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.
2.探索活动
(1)需要特别注意的是,算式“( 3) (一2)= 1”
只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.
课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.
与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然
后确定输赢球的个数,这是绝对值问题.
(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的`距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.
3.例题教学
例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.
学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。
【教学过程设计建议(第二课时)】
1.探索活动
从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.
在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.
此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.
2.例题教学
例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.
【教学过程设计建议(第三课时)】
1.情境创设
小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.
2.探索活动
(1)用问题串引导学生展开探索活动,例如:
小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?
小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.
小明与小丽的结论相同,是偶然巧合吗?请举例说明.
(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.
3.例题教学
例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.
设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.
教学中,如有必要可适当补充加、减混合运算的例题、习题.
4.小结
除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.
《有理数》教学设计5
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的.理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
《有理数》教学设计6
一、教学目标:
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答:-3 - 3×3×(-3)=333324
师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出33(3)的答案
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的.帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
学生活动:请同学们拿出一张纸进行对折,再对折
问题:(1)对折一次有几层? 2
(2)对折二次有几层? 224
(3)对折三次有几层? 2228
(4)对折四次有几层? 222216
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记:22 23 24
师:请同学们总结对折n次有几层?可以简记为什么?
2×2×2×2×2
n个2
生:可简记为:2n
aaa?师:猜想:a生:an
n个a
师:怎样读呢?生:读作a的n次方
老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a
的因数),n叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:
练习一:把下列各式写成乘方运算的形式:
6×6×6= (-3) (-3) (-3) (-3)=
2.1×2.1×2.1×2.1×2.1= 1
21
21
21
21
21
2=
注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义
543431126
3.学生分小组讨论,总结乘方运算的性质
师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)
教师再对各种情况进行分析总结。
师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正
数,0的任何正整数次幂都为0。
4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?
(-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9
乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解
例1:计算(教师板演一题后请学生板演)
(1) 26 (5) 62
(2) 73
44(3) (3) (6) 3
33(4)(4) (7) 4
比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?
小结:一定要先找出底数和指数,确定符号后再去计算。
例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334
比一比:(2)与(3)一样吗?(4)与(5)一样吗?
总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。
5、课外探究
一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。
6、归纳总结,形成体系:
1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;
特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来
2
3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。
7、作业布置:习题2.6第1、2题;
《有理数》教学设计7
有理数的加法运算律及应用
教材分析:有理数的加法运算律
【地位作用】
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的`符合和绝对值),关键在于本一节的学习。
【教学目标】
知识与技能
通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
过程与方法
培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。
情感态度与价值观
培养学生把实际问题抽象成数学问题的能力
【教学重点、难点】
重点:有理数加法运算律
难点:灵活运用有理数运算律简便运算
重难点的突破:
1、处理好知识之间的联系。适时复习,以旧带新,相互对比。
2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。
【学情分析】
认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。
能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。
2.对异号两数相加确定符号,绝对值大减小掌握不好。
3.学生善于形象思维,思维活跃,能积极参与讨论。
【教法与学法】
教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧
【教学过程分析】
回顾复习,承前启后
例题讲解,合作学习
应用练习,巩固新知
归纳总结,反思提高
作业布置
《有理数》教学设计8
一、教学目标
1、知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2、数学思考
通过观察,比较,归纳等得出有理数加法法则。
3、解决问题
能运用有理数加法法则解决实际问题。
4、情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5、重点
会用有理数加法法则进行运算。
6、难点
异号两数相加的法则。
二、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三、学校与学生情况分析
七年级3、4班学生大多数来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(—2),黄队的净胜球为
1+(—1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。这节课我们来研究两个有理数的`加法。
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量。若我们规定赢球为“正”,输球为“负”,打平为“0”。比如,赢3球记为+3,输1球记为—1。学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。也就是
(+3)+(+1)=+4。
(2)上半场输了2球,下半场输了1球,那么全场共输了3球。也就是
(—2)+(—1)=—3。
现在,请同学们说出其他可能的情形。
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(—2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(—3)+(+2)=—1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(—2)+0=—2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0。
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3。一个数同0相加,仍得这个数。
(三)、应用举例变式练习
例1口答下列算式的结果
(1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);
(5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0。
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则。进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值。
例2(教科书的例1)
解:(1)(—3)+(—9)(两个加数同号,用加法法则的第2条计算)=—(3+9)(和取负号,把绝对值相加)
=—12。
(2)(—4。7)+3。9(两个加数异号,用加法法则的第2条计算)=—(4。7—3。9)(和取负号,把大的绝对值减去小的绝对值)=—0。8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(—0。9)+(+1。5);(2)(+2。7)+(—3);(3)(—1。1)+(—2。9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)、小结
1、本节课你学到了什么?
2、本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、计算:
(1)(—10)+(+6);(2)(+12)+(—4);(3)(—5)+(—7);(4)(+6)+(+9);
(5)67+(—73);(6)(—84)+(—59);(7)33+48;(8)(—56)+37。
2、计算:
(1)(—0。9)+(—2。7);(2)3。8+(—8。4);(3)(—0。5)+3;
3、29+1。78;(5)7+(—3。04);(6)(—2。9)+(—0。31);
(7)(—9。18)+6。18;(8)4。23+(—6。77);(9)(—0。78)+0。
4、用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0。
五、教学反思
“有理数的加法”的教学,可以有多种不同的设计方案。大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。现在,试比较这两类教学设计的得失利弊。第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好。
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。权衡利弊,我们主张采用第二种教学方法。
《有理数》教学设计9
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;
第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知---新(创设新的问题情境)。
今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知---行
(1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知---省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知---信
此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,5、联系实际、小小拓展;
为落实“数学来源于生活、生活处处有数学”的.理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
6、教学小结、知识回顾:教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。
7、课外作业
为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请
聪明的你举例说明。
同行点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。
教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
《有理数》教学设计10
一、教学目标:
1、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.
3、情感态度与价值观
培养学生主动探索的良好学习习惯.
二、教材分析:
难? ? 点:异号两数相加.
3、教学过程
教学过程
教师活动
学生活动
设计意图
知识回顾
5分钟
新知讲解
8分钟
15分钟
1、什么叫相反数。
什么叫绝对值。
2、-5的相反数和绝对值分别是什么。
0的相反数和绝对值分别是什么。
激趣
请大家帮老师算一算:
小明昨天借了老师十元钱买文具,今天又借了老师八元钱,请问他还欠我钱吗。
如果欠钱的话又欠我多少呢。
你能用数学算式表示出来吗。
如果小明今天还给老师八元钱又该怎么计算呢。
如果小明今天还给老师十元钱又该如何计算。
如果小明说今天没带钱,那他又欠我多少呢。
自主探究
1、请同学们自己阅读教材P16到P18,并结合刚才说的看看你自己理解了多少。还有那些不理解的我们共同解决;
2、如果自己不清楚的话,请同学们小组之间互助解决以下问题:
(1)如果是同号两数相加,符号如何决定,和的绝对值和绝对值的和又有什么关系。
(2)如果是异号两数相加,符号如何决定,其绝对值之间又存在什么关系。
(3)互为相反数两数相加结果又是什么。
(4)一个数同0相加结果又是什么。
1、只有符号不同的两个数叫做互为相反数;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值
2、-5的相反数是5,绝对值也是5;
0的相反数和绝对值都是0
欠老师-10+(-8)=-18(元);
-10+8=-2(元);
-10+10=0(元);
-10+0=-10
同号两数相加,取相同的符号,并把绝对值相加;
例:5+3=8;
(-5)+(-3)=-8
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
例:(-3)+5=2;
3+(-5)=-2
互为相反数两数相加得0
例:5+(-5)=0;
-10+10=0
一个数同0相加,仍的这个数
例:-10+0=-10;
5+0=5
回顾相反数与绝对值的概念为本节课能准确理解有理数加法法则打下基础
让学生通过生活中熟悉的例子体会数学在期中的应用,为我们后面总结有理数加法法则打下基础
通过提问,边总结边结合实例进行讲解,让学生对法则有更深的理解
例题讲解5分钟
巩固练习
10分钟
知识小结
2分钟
例1 计算(-3)+(-9);
(-4.7)+3.9.
1、请在括号内填写适当的有理数并说出其中的法则:
2、列式计算
(1)-5的相反数与-18的和;
(2)一个数比-6大1,另一个数比-10大4,求这两个数的'和。
3、如两个有理数之和为正,则两数中(? )
A 同为正数? ? B 同为负数
C 一正一负? ? D 至少有一个为正数
4、下列说法中正确的是(? )
A 两数的和必须大于每一个加数
B 两数和为负数,则一个数为正数,另 一个数为负数
C 两个有理数和的绝对值等于这两个有理数绝对值的和
D 异号两数相加,和的符号取绝对值较大的数的符号
请同学们回顾一下有理数加法法则;
互相交流下自己到底学会了多少,还有那些不会。
(-3)+(-9)=-(3+9)=-12;
(-4.7)+3.9=-(4.7-3.9)=0.8
-33
-12
-(-5)+(-18)
[(-6)+1]+[(-10)+4]
D
D
让学生自己解决,不会时再以小组讨论方式进行,目的让学生规范计算过程,并对同号相加以及异号相加有更深一步了解
这些题目先让学生自己练习,对于不会的可以以小组合作方式共同解决,期中
1、2题主要练习计算,3、4主要练习学生对加法法则的深度理解能力,能够帮助学生对本节课只是更好的吸收和消化
布置作业
必做题:课本P24习题1.3第1题,第2题
选做题:
-98×201+99×202=______
教学反思
1、本节课在刚开始引入时以学生熟悉的金钱方面入手,让大家不会对本节课的知识有陌生感,同学自己学习以及前面的引入,学生在总结有理数加法时不会感觉那么突兀,而且能够更好的理解有理数加法法则;
2、结合学生的实际情况,在本节课没有设置比较难的题目,目的是增加大家的学习兴趣以及树立学生的自信心。
3、对个别成绩好的课后要另外增加难度。
《有理数》教学设计11
教学目标
知识与技能:
说出有理数的意义以及有理数的分类和0在分类中的作用。
过程与方法:
树立对数分类讨论的观点并发展正确地进行分类的能力。
情感、态度与价值观:
通过有理数的分类,感受数学对称美。
重点、难点
1.重点:有理数包括哪些数。
2.难点:有理数的分类。
教学思路
这节课主要教学内容是有理数的分类,讲解时要启发引导,充分体现学生为主体,注重学生参与意识。
教学过程
(一)复习导入
(出示投影1)
1.把下列各数填入相应的大括号内:
+6,3.8,0,-4,-6.2,-3.8,正数集合
负数集合
2.填空:
(1)若下降5记作-5,那么上升8记作__________________,不升不降记作_____________________。
(2)如果规定+20表示收入20元,那么-10元表示______________。
(3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在地不动记作__________________。
【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢。0是正数吗。是负数吗。通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。
通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。
师:在小学大家学过1,2,3,4……这是什么数呢。
生:自然数。
师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢。
生:负数。
师:具体叫什么负数呢。
师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。
【教法说明】
通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。
(二)探索新知,讲授新课
1.分类数的名称
1,2,3,4……叫做正整数;
-1,-2,-3,-4……叫做负整数。
0叫做零,(即)……叫做正分数;,(即)……叫做负分数;
正整数、负整数和零统称为整数。
正分数和负分数统称为分数。
整数和分数统称有理数。即
【教法说明】
以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。
提出问题:巩固概念
(出示投影2)
(1)0是整数吗。是正数吗。是有理数吗。
(2)-5是整数吗。
是负数吗。
是有理数吗。
(3)自然数是整数吗。是正数吗。是有理数吗。
【教法说明】
1.这三道小题主要是检查学生对概念的.理解。
新授过程中随时设计习题进行反馈练习,以便调节回授。
注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。
2.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:
(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:
(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类
尝试反馈,巩固练习
(出示投影3)
下列有理数中:-7,10.1,89,0,-0.67,.
哪些是整数。哪些是分数。
哪些是正数。哪些是负数。
学生思考,然后找同学逐一回答.其他同学准备补充或纠正。
【教法说明】
通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。
3.数的集合
我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。
(三)变式训练,培养能力
(出示投影4)
(1)把有理数6.4,-9,+10,-0.021,-1,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合,负整数集合
正分数集合,负分数集合
(2)把下列有理数:-3,+8,+0.1,0,-10,5,-0.7填入相应的集合:
整数集合,分数集合
正数集合,负数集合
【教法说明】
学生思考后,动笔完成上述第(1)题。
一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。
(四)归纳小结
师:今天我们一起学习了哪些内容。
由学生自己小结,然后教师再总结:
今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。
【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。
(五)反馈检测
(出示投影5)
(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。
(2)把下列各数填入相应集合的持号内:
-3,4,-0.5,0,8.6,-7
整数集合:,分数集合:
正有理数集合:,负分数集合:
(4)选择题:-100不是(?)
A.有理数;?B.自然数;?C.整数;?D.负有理数。
以小组为单位计分,积分最高的组为优胜组.
【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。
布置作业
思考题:把下列各数填在相应的集合中
3.14,-5,0,89,-2.67,+1001
有理数集合:
非负有理数集合:
负有理数集合:
板书设计
一、复习引入
二、探索新知
三、变式训练
四、归纳小结
五、反馈检测
教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
《有理数》教学设计12
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标
1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的'过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:
(1)答错3题时:
(-4)+(-4)+(-4)=-12分
(2)答对5题时:4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
《有理数》教学设计13
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫
原 点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数
比较有理数大小,上右边的数总比左边的数要大
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做。
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)能形象地表示数,所有的有理数都可用上的'点表示,但上的点所表示的数并不都是有理数。
以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示。
2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).
A点表示-4; B点表示-1.5;
O点表示0; C点表示3.5;
D点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数。
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
教学设计示例
《有理数》教学设计14
教学目标
1、使学生了解加减统一为加法对简化计算所起的作用
2、能灵活运用加法运算律进行有理数的加减混合运算
3、培养学生观察、讨论、积极思维探索的能力
4、激发学生对数学的兴趣,培养学生热爱数学的情感。
教学重点、难点
能灵活运用加法运算律进行有理数的加减混合运算
教学过程
一、设问题情况
+(-1)-(-2)+(-3)-(-4)+(-5)-(-6)……(-50)
鼓励学生发言、讨论交流
1、出问题
(1)如何解该?
(2)如何将减号进行转变?
三、新课讲授
根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法
例:(-8)-(-10)+(-6)-(+4)如何统一成加号?
省略加号如何表示?-8+10-6-4
注:在一个和式里,通常把各个加数的刮号与它前面的加法省略不写
如何读呢?
按和式读做“负8,正0,负6负4的和”
按运算意义读做负8加10减6减4
例1、把(+1)+(-3)-(+2)-(-4)-(+6)写成省略加号的和的'形式,并把它读出来。
解:原式=(+1)+(-3)+(-2)+(+4)+(-6)
=1-3-2+4-6
学生板演,练习用两种方法读出
例2、计算
(1)-24+3.2-1.6+3.5+0.3
(2)0-21+3-(-0.5)-(-6)-(+4)
解(1)因为原式表示-24,3.2,-16,-3.5,0.3的和,所以可将加数适当交换位置,并作适当的结合进行计算,即
-24+3.2-16-3.5+0.3
=(-24-16)+(3.2+0.3)-3.5
=-40+3.5-3.5
=-40 .
(2)0-21+3-(-0.5)-(-6)-(+4)
=0+(-21)+(+3)+(+6)+(-4)
=-21+3+6-4
=(-21-4)+(3+6)
=-25+9
=-16
提问:如何解?(多种方法)
法一:按正常顺序来解(从左到右)
法二:运用简便方法来解(加法交换律和结合律)
问:为什么要用加法运算律?该如何灵活运用?
如何使得计算简便?
1、正数和正数放在一起,负数和负数放在一起
2、互为相反数的放在一起
3、同分母的放在一起
4、能凑整的放在一起
四、练习
1、把下列各式写成省略加号和的形式,并说出他们的两种读法
(1)(-12)-(+8)+(-6)-(-5)
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2、计算
(1)-30-11-(-10)+(-12)+18
(2)3 1/2-(-21/4)+(-1/3)-0.25+(+1/6)
五、小结:
1、加减法统一为加法
2、进行有理数加减混合运算的注意点
(1)互为相反数放在一起
(2)同分母的放在一起
(3)能凑整的放在一起
(4)小数与小数放在一起,整数与正数放在一起(等等)
六、作业:P47习题2.8(2、3)
《有理数》教学设计15
《有理数的乘方》是新人教版七年级数学第一章有理数中第五节内容,是学生学习有理数的加、减、乘、除四种运算后的一个有关有理数的运算。
教材分析:
《有理数的乘方》是有理数乘法中相同因数相乘的简单表示方法,它作为基础知识,对学生以后学习科学记数法,进行幂的五种运算、整式加减等知识有很大帮助。
学情分析:
学生在小学阶段学过边长为 a 的正方形的面积 a 2 , 正方体的体积 a 3 ,同时,学生已经熟练掌握有理数乘法的运算,为学生学习有理数的乘方奠定了基础。
教学目标:
知识目标:
理解有理数乘方的意义,能根据乘方的意义进行有理数的乘方运算。
能力目标:
通过学生自学、观察、思考,小组讨论、总结等活动,让学生体会从特殊到一般的归纳过程,培养学生的语言表达能力,学生的观察力、倾听及自学的能力,提高学生的逻辑思维能力。
情感目标 :
通过小组讨论,共同探索,共同分享成功的喜悦,感受团结协作的团队精神,激发学生学习数学的兴趣。
教学重点:有理数乘方的意义。
教学难点:负数的正整数幂的正负。
教学方法:学生自学与四环节教学法相结合。
教学过程设计
(一)体验感受,激发兴趣
做游戏:拿出课前让学生准备好的纸,让学生动手折纸。
对折1次后,纸变成了几层?对折2次后变成几层?按照刚才折纸的规律,将一张足够长的纸连续20次,应该是多少层?
第1次对折的层数是:2
第2次对折的层数是:2×2
第3次对折的层数是:2×2×2
第20次对折的层数是:2×2×2×2……×2
20个2
20个2相乘的结果是多少?如果这张纸的厚度为0.1毫米,那么折纸的高度比我们学校的教学楼要高得多,你相信吗?学了今天的内容你们就会明白了。(板书课题——有理数的乘方)
【设计意图】学生亲自动手,切实体验感受,激发其寻求规律的欲望,为新课学习作铺垫。
(二)比较概括,提炼概念
问题:1.边长为5的正方形的面积是多少? 2.棱长为5的正方体的体积为多少? (课件出示)
5×5=5=25 5×5×5=5 =125 23
我们知道:5读作5的平方;5读作5的立方。5还读作5的二次方或5 23 2的二次幂;5还读作5的三次方或5的三次幂。
3
同样的,20个2相乘记作2,读作2的二十次方或2的二十次幂。n个a20相乘记作a,读作a的n次方或a的n次幂。(学生回答)
n像以上这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
在a中a叫做底数,n叫做指数。可读作:a的n次方(或a的n次幂) n如:在9中,底数是( );指数是( );幂是( )读作( )。
4【设计意图】通过复习旧知让学生自然归纳总结,从而得出乘方概念,并用图表表示出有理数的乘方各部分名称,形象直观,利于学生接受。
(三)巩固概念,探究规律
出示例1:(-2) 读作什么?并写出底数和指数。 6讨论后请一位学生上台板演。
及时练习:
(1)2读作__,其中底数是__,指数是__,表示为__,结果为__。 3(2)(-3)读作__,其中底数是__,指数是__,表示为__,结果为__。 4(3)(-)读作__,其中底数是__,指数是__,表示为__,结果为__。
4
出示例2:计算(1)(-2);
(2)(-4);
(3)(-2);
(4)234(-1);
(5)3;
(6)2
523
学生分两组求出计算结果。
引导探究:观察例2的结果,你能发现什么规律?用自己的`语言描述你的发现。(先独立思考,再小组讨论)
启发:底数、幂的符号和指数之间的关系。
归纳:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
及时巩固练习(练习题见课件,共8题)
【设计意图】通过学生自己做练习、探索规律,获取乘方运算的符号法则。放手让学生合作探究,把课堂还给学生,真正体现学生的主体地位。
(四)加深认识,拓展思维
小组讨论1:-3与(-3)有什么不同?结果相等吗? 22
-3=-9;(-3)=9 22
-3读作3 的相反数;(-3)读作-3的平方 222
小组讨论2:观察7、8两题的结果,你能发现什么规律? 1.负数的奇次幂是负数,负数的偶次幂是正数。
2.10等于1后面加n个0。
n
【设计意图】通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳和概括的能力。
(五)总结练习,感悟收获
本节课你学到了什么?
1.有理数的乘方的意义和相关概念。
2乘方的运算法则。
练习巩固新知
【设计意图】让学生通过知识性内容的小结,把课堂教学传授的知识尽快转化为学生的素质,逐步提高学生的归纳能力和语言表达能力。
(六)走进生活,激发兴趣
1.把一张足够大的厚度为0.1毫米的纸,连续对折20次的厚度是多少?比我们的教学楼高吗?(对应导入)
一张厚度是0.1毫米的纸,将它对折1 次后,厚度为0.1×2毫米;对折2次后,厚度为0.1×2=0.4毫米;对折20次后,厚度为0.1×2=0.1×1048576220毫米=104.8576米。比10个教学楼还要高。
2. 棋盘上的数学。古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米”你认为国王的国库里有这么多米吗?
第64格上的米粒数为2 =9223372036854775808粒,是一个非常庞大63的数字。
【设计意图】体会乘方结果的惊人,培养对数学探究的兴趣。
(七)布置作业,课外拓展
1、P1、2、3 80
2、网上搜集有关乘方的数学故事,讲给同学们听。
【《有理数》教学设计】相关文章:
有理数教学设计03-18
《有理数》教学设计10-17
《有理数的加法》教学设计06-13
有理数的乘法教学设计02-26
《有理数的乘法》教学设计06-08
有理数的加法教学设计06-29
《有理数的加法》教学设计(精品)09-12
《有理数的乘法》教学反思04-22
《有理数乘方》教学反思01-14
有理数教学反思(通用13篇)04-13