一个数除以分数教学设计(集合)
作为一名专为他人授业解惑的人民教师,总归要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。一份好的教学设计是什么样子的呢?下面是小编为大家整理的一个数除以分数教学设计,希望对大家有所帮助。
一个数除以分数教学设计1
教学内容:
五年级上册第21、22页的例。
5、例6及“做一做”,练习四的部分习题。教学目标:
1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。2.培养学生的分析、转化及归纳的能力。
3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的`简单问题。教具、学具准备:多媒体课件教学设计:
一、尝试口算,感悟计算方法。
1、我们来看一张口算表。你能快速说出结果吗?
2、我们已经开始学习小数除法了,下面我们来看一个问题(投影出示):一个日记本要2.4元,一块橡皮要0.6元。
1、出示:7.65÷0.85这道题能一眼看出答案来吗?有困难,找笔算。
我希望在大家的笔算竖式中,能看出你们心里是怎么计算的。学生独立尝试,请学生板演。
大家有什么问题吗?预设:a、为什么要划去小数点。
b、为什么被除数和除数都要划去小数点。c、下面的765为什么没有小数点。
d、不是说商的小数点要和被除数的小数点对齐吗?商的小数点呢?
2、4.48÷3.2学生笔算,指名板演。比较你喜欢哪一种思考方法?突出根据除数的小数位数来确定扩大的倍数。
三、小结方法。
讨论,除数是小数的除法,怎样计算?
四、巩固练习。
2、判断题。
先说一说,你是怎样看出错误的,再全班练习,订正答案。
五、拓展:
板书设计:
除数是小数的除法。
除数是整数的除法。
思考:
1、从口算入手,理清算理。
2、尊重学生个体体验,形成笔算格式。
3、控制一节课的内容非常重要。
4、唤醒学生的知识库存记忆是很有必要的。
一个数除以分数教学设计2
教学目标
1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系.
2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.
3.培养学生的`计算能力及抽象、概括、分析、比较和综合的能力.
教学重点
使学生理解并掌握一个数除以分数的计算法则.
教学难点
用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.
教学过程
一、复习引新
(一)口算下面各题
(二)口答分数除以整数的计算方法.
(三)一个数的5倍是30,求这个数.
二、讲授新课
(一)教学例2
例2.一辆汽车 小时行驶18千米,1小时行驶多少千米?
教师提问:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(板书课题:一个数除以分数).
教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出
小时行18千米?.(演示课件:一个数除以分数)
观察:从图上看1小时里有几个 小时?(5个 小时)
推想:要想求出5个 小时行驶多少千米?就必须先求出什么呢?( 小时行的路程)
( 小里有2个 小时,2个 小时行18千米,用182就可以求出 小时行驶的千米数)
教师板书:
(二)教学例3
例3.小刚 小时走了 千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式: .
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
4.汇报: 求出 小时走的,1小时里有10个 小时,所以再乘10就求出1小时走的千米数.
5.推导过程:
(千米)
6.教师提问:在这一过程中什么变了,什么没变?
(三)总结计算法则
教师说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数.
甲数除以乙数(0除外),等于甲数乘乙数的倒数.
(四)反馈练习
一个数除以分数教学设计3
新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,我认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望,在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
1与生活的密切联系。通过合作交流、比较的方法,归纳出“一个数除以小数的除法”的计算方法。
【教学目标】。
(1)通过自主探索、合作交流,理解小数的除法计算法则,能正确地进行计算。(2)培养学生运用转化的思想,自己发现问题,解决问题。(3)通过学习活动,培养积极学习态度,树立学好数学的信心。
【教学重点与难点】。
(1)教学重点:利用商不变的规律,正确地把除数是小数的除法转化成除数是整数的除法。
(2)教学难点:除数转化成整数,正确移动被除数的小数点。【教学准备】。
一、复习铺垫。
1、游戏导入。
师:同学们,你们喜欢玩游戏吗?生:喜欢!
师:在上课前,我们来做一个接龙游戏,看看哪个组表现最好,好吗?生:好!。
(点击多媒体课件,出示四组下面这样的题目进行接龙游戏。)。
(1)0.78扩大10倍是()。
(2)9.38扩大100倍是()。
(3)6.73扩大1000倍是()。
(4)0.023扩大100倍是()(表扬表现出色的小组。)。
2、点击多媒体课件出现:
你能不用计算,判断出下面各式的商是否一样?请说明理由。270÷90。
27÷9。
2.7÷0.9(学生归纳出商不变的规律,答对的表扬,答错给予鼓励。)。
二、创设情境,激趣导入。
师:(教师手拿中国结)同学们,你们看这是什么?
生齐答:“中国结”。
师:你们知道“中国结”是用什么做?
生1:用丝绳。生2:用彩绳。
师:你们对它的了解有多少?生1:代表吉祥如意。生2:表示祝福。
学生3:是中国的一种特色手工艺品。师:你们想学吗?生齐说:想。
师:老师介绍一位老奶奶给你们认识好吗?她的手可巧,会编各种的“中国结”。这节课谁表现出色,老师就把“中国结”奖给谁。全体学生:好!
师:请同学们打开书本29页,例5。
三、探索计算方法。
(一)教学例5。
师:请同学们独立分析题目的已知条件和问题,列出算式。生:7.65÷0.85=。
(老师板书算式)师:请说说你是怎样想的?
生:要求这些丝绳可编成几个“中国结”,就是求7.65里面有几个0.85,用除法计算。
2、观察并比较式子的特点。
师:这个算式和上节课学的除法算式有什么不同?生:上节课学习的'除数是整数,而这道题的除数是小数。
3、小组合作,初步探索计算方法。
小组1:我们小组愿意,把7.65米0.85米都换成分米作单位的数,然后再计算。就可以计算出结果了。
师:你们说得好!(老师、学生掌声鼓励小组1。)。
0.85米=85厘米。
765÷85=9(个)师:这个组也不错!
小组3:我们小组认为可以运用商不变的规律,把被除数和除数同时扩大100倍,变成765÷85计算就可以了。
4师:第3小组说得非常好,同学们用热烈的掌声表扬这个小组。
小组4:我们小组与他们的都不同,我们刚学过除数是整数的小数除法,根据商的变化规律,被除数不变,除数扩大到它的100倍,商就缩小到它的100倍,这样也可以算出7.65÷0.85的商。师:也说得对!
5、交流,比较寻求最佳计算方法。
师:同学们通过动脑筋想出这么多方法计算7.65÷0.85,真了不起!
师:你认为这几种做法,哪种方便,为什么?(让学生各抒己见,说出自己的理由。)。
生1:我认为第3种方法好,方便又快。
生2:我同意第一位同学的说法,因为第1、2种只适合能够进行单位换算的一些数量,没带单位的数量就不能计算了;第4种更麻烦,换来换去容易出错;第3种就不同了,利用商不变的规律,只要把除数变成整数就行了。
生3:我们小组原来用第2种方法做的,但经过比较觉得第3种方法好,把米数改写成厘米数,实际上是间接的把被除数和除数同时扩大到原来的100倍。师:对,第3种方法方便。通过比较我们发现,可以利用商不变的规律,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数的除法”来计算。(教师板书)。
板书:除数是小数的除法。
商不变的规律转化。
6、指导书写格式(竖式板书)。
〔设计意图:使学生清楚地明白转化的过程,又掌握了规范的竖式书写格式。〕。
7、反馈练习47.85÷0.75。
(学生独立完成后检验,同位交流;在学生独立做题时,教师辅导学习有困难的5学生。)。
(二)教学例6(自主学习)(教学时间:5分钟)。
1、出示例6计算12.6÷0.28。
2、尝试独立计算。(要求学生边算边思考下面的问题,这些问题用多媒体课件演示。)。
(1)这里被除数和除数各有几位小数?(2)怎样才能把除数变成整数?(3)被除数只有一位小数,小数位数不够怎么办?(在学生做题时,老师巡视用日记本做好学生错题记录。)。
3、教师把巡视时,记录的错例让学生进行对比分析。(让书写端正的一位学生到黑板做12.6÷0.28。)。
(三)通过对比,归纳小数除法的计算方法。
1、师:观察例。
5、例6,它们有哪些相同的地方?那些不同的地方?
生1:相同的是,两题的除数都是小数;不同的是,例5被除数与除数小数的位数相同,例6被除数与除数小数的位数不同。
生2:相同的是,都是把除数的小数点去掉,使除数变为整数;不同的是,例6的被除数在移动小数点时,位数不够要在末尾用“0”补足。
(1)鼓励学生大胆地用自己的语言描述一个数除以小数的计算方法。(2)引导学生把“一个数除以小数的除法”的计算方法,分三个步骤总结。教师加以提炼得出:
一看:看清除数有几位小数;
三算:按照除数是整数的除法的方法计算。(点击多媒体课件出示计算方法)。
6(3)找出计算方法的关键。
师:你认为除数是小数的除法计算,关键是什么?
生1:我认为,在计算一个数除以小数的关键是把除数转化成整数然后计算。生2:我认为,“除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不够时,用0补足”是计算的关键。
生3:我认为,关键是转化时看除数有几位小数,就把除数的小数点向右移几位,同时被除数的小数点也要向右移动几位。
(四)阅读与质疑。
(1)认真阅读书本例5和例6的内容。
(2)质疑。
(2)。
四、展示练习,深化认识。
(1)在()里填上适当的数。
0.12÷0.3﹦()÷。
33.72÷2.4﹦()÷240.672÷0.28﹦()÷28。
1.36÷0.16﹦()÷16(学生回答后表扬)。
(2)书本“做一做”第1题。
(你要认真审题,完成后还要认真检验哦!)(3)数学医院:(书本“做一做”的第2题)。
(看看谁是个好医生,要细心点哦!)。
(4)现场实践活动(在教室内设置几个购物点,由几位同学扮演售货员,同学们前往购物。)师:同学们,你们表现这么出色,老师带你们去购物好吗?全体生:好!出现下面情景:
7※情景1:学生拿25.2元到商店买日记本,每本日记本3.6元,能买几本。※情景2:到书店购买书每本10.5元,带了31.5元,可以买几本。※情景3:到超市买巧克力,每块2.5元,10元可以买几块。
五、谈收获:
(3)。
1、这节课你有什么收获?请和你的同学交流。
2、发奖,表扬表现出色的同学。
六、板书设计:
除数是小数的除法商不变的规律。
【设计思路】。
一个数除以小数是人教版五年级上册第二单元的内容。是在学生学习过除数是整数的除法后进行的。在教学时,我是这样做的:
一、先创设情境,媒体出示两种价格的笔记本图,先让学生审清题意,再说数量关系并列式。列式后提问你会算哪个算式?学生算完除数是整数的除法后说说要注意什么。
二、让学生观察另一个算式与以前学过的除法有何异同,即引导学生通过与旧知识的比较,发现新旧知识的主要区别是“除数由整数变成了小数”。你能用我们学过的本领尝试解决今天的除法是小数的除法?小组讨论。这时学生的思维就会变得十分活跃,想出解决问题的许多办法:有的组联想到利用商不变性质,被除数和除数同时扩大10倍,;也有的组联想到化成较低单位的数。
三、优化方法,教师把学生的表达用简练的语言总结。让学生明白,小数除8以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,再把被除数的小数点向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。最后通过一些课后练习及生活中的数学,让学生巩固方法。
在作业反馈中,我发现学生计算错误较多。主要表现在:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。
三、商的小数点与被除数原来的小数点对齐。
四、算时用商乘以移动小数点后的除数。
五、除到哪位商哪位,不够时忘记在商的位置上写0,再拉下一个数。新课标要求数学课程不仅应重视教学的内容和要求,更应充分关注课程中的学习过程,创设有利于学生发挥主体性和创造性的条件。在学习小数除法的时候,其实有很多性质和常识可以帮助我们初步判断商是否准确,比如被除数比除数小,商就比1小,被除数比除数大,商就比1大,被除数除以小于一的数,商反而大,包括之前提到的商不变的性质。可是学生由于缺乏生活经验,并不能很灵活的利用这些性质和意义,在求出错误商时,不注意检查!
一个数除以分数教学设计4
教学内容:九年义务教育六年制小学数学第十一册第33-35页例2、例3。
教学目的:
1.进一步理解分数除法的意义,沟通乘除之间的联系。
2.掌握一个数除以分数的推理过程,运用转化的思想领会计算方法的来由。
3.熟记一个数除以分数的计算法则,并能加以运用。
4.培养分析、推理、辩证思维等能力。
教学重点:运算法则。
教学难点:推算过程。
[评:目标表述具体、简便,便于检测和评估。]
教学过程:
一、复习引入
1.复习。
(1)说出各算式的意义和计算结果。
÷3 ÷4 ÷2 ×5
(2)说出应用题的算式及所表示的意义。
一辆汽车2小时行驶90千米,1小时行驶多少千米?
(3)根据分数除法意义,把下面乘法算式改写出两道除法算式。
45× =18 × =
2.设问。
(1)上面所写出的.除法算式中,哪个是分数除法?
(2)我们已学习了分数除以整数的分数除法,那么,整数除以分数、分数除以分数的分数除法的计算方法是怎样的呢?
3.揭题。
今天这节课我们就来学习研究"一个数除以分数"的计算方法,看谁最先学会。
[评:复习、设问、揭题紧密相联,设置新旧知识矛盾情境,激发学生学习动机。]
二、新课教学
1.讲解算理。
(l)出示例2。
(2)学生读题,理解题意。
(3)列出算式:
①根据"速度=路程÷时间"应列出怎样的算式?
②板书:18÷
③想一想能不能按照分数除以整数的计算方法计算?
(4)讨论算法。
①根据题意画出思路图:
②分析:
a.已知 2/5小时行18千米,求1/5 小时行多少千米,该怎么算?(18÷2)
b.18÷2,还可以写成什么算式?(18×1/2 )
c. 1/5小时行"18×1/2 (千米)",求1小时行多少千米,又怎么样?(18×1/2×5)
d.18× ×5中的"×5"是什么意思?
e.这个算式还可以写成什么算式表示?
③板书:
18÷2/5 =18×1/2×5=18×2/5
④观察思考:
a.这个等式前后有什么变化?
b. 与 是什么关系?
c.由除法转化为乘法,说明了什么?
d.从"18÷2/5 = 918 × 1"这个等式,可以得出什么结论?
(5)教师小结:由上例可知整数除以分数可以转化为乘以这个分数的倒数。
板书:18÷ =18× =45(千米) 答:(略)
(6)做一做。
12÷3/5 24÷2/3 1÷5/7
[评:以除法转化为乘法为思路,引导学生分析、观察、思考,强化认识过程,注重理解,不轻易下结论。]
2.研究算法:
(1)出示例3:小刚3/10 小时走了14/15千米他1小时走多少千米?
(2)学生自学,教师巡视。
(3)指名学生板算:
14/15÷3/10= 14/3×2/3=28/9=3又1/9(千米) 答:(略)
(4)师生研讨:
①列算式的依据是什么?
②算式中的"÷ "为什么可以变成"× "?
③整数或者分数除以分数,计算时分别转化成什么样的计算?
④怎样验证这种计算结果是正确的?
⑤指名学生板算出验证过程:
14 1 1 3
× = × = ÷ = × =
3 5 5 2
⑥分数除以分数的计算方法能用一句比较恰当的话来叙述吗?让同桌学生相互议论,再指名回答。
⑦教师板书:一个数除以分数,等于这个数乘以原分数的倒数。
[评:采用让学生自学、尝试、验证的教学策略,充分发挥了学生的智能因素,调动了学生去主动获取知识的积极性。]
3.概括法则。
(1)出示: ÷9 9÷ ÷
(2)学生独立计算。
(3)指名学生在黑板上演算并说出计算方法。
÷9= 1× 3= 9÷ = 93× 1=12
÷ = 1× 2=
(4)观察议论:
①上面三道题分别叫做什么除法题?
②上面三道题的计算方法与过程相同吗?为什么?
③想一想,计算分数除法能否找到一个统一的法则?如果有,那么这个统一的法则是怎样的?
(5)启发概括:
①板书:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
②齐读法则。
4.看书质疑。
5.强化论证。
(1)启发思考:
①这个计算法则,除以上我们研讨的推导方法外,还有没有其它方法推导出来?
②当甲数除以乙数(0除外)时,除数是什么数算起来最方便?
(2)师生共同议论:
①出示: ÷
②怎样使这个算式中的除数变成1?被除数应怎样?
③板书:( × )÷( × )= × ÷1= ×
④让学生各举一例动手验证一下。
[评:利用知识间的联系,可以促进知识的发展。对法则的概括统一和进一步的强化论证法则,就说明了在数学中要善于捕捉这些联系规律,从而促进知识的沟通,促进学生对知识的深化理解。]
三、巩固练习
1.填空:
(1)甲数除以乙数(0除外),等于( )。
(2) ÷ = × (3) ÷ = ( )
(4) ÷ =( )×( ) (5) ÷ =
2.判断。下面各题如果有错误在( )更正。
(l)9÷ = 93× 1= =6 ( )
(2) ÷3= ×3= = ( )
(3) ÷ = 1× 1=4 ( )
(4) ÷ = 2× 1= = ( )
3.口算抢答题:
(1) ÷3 (2)3÷ (3) ÷
(4) ÷ (5) ×2 (6)6×
(7) ÷ (8) ÷
4.记出下面各题的计算方法有什么不同。
+ - × ÷
5.独立计算。
÷10 21÷ ÷ ÷
[评:突出重点,抓住关键,练在点子上,层层推进,在运用法则过程中进一步强化认识,深化记忆,形成知识。]
四、全课小结
1.一个数除以分数包括哪些内容?
2.一个数除以分数的计算法则是什么?
五、布置作业(略)
[总评:全课教学思路清晰,讲究课堂教学实效。按照学生的认识规律,强调对法则的认识过程,避免学生表面化、形式化的理解。同时在法则的揭示、分析、解决中发展了学生思维的内驱力,渗透了辩证观点的教育。]
一个数除以分数教学设计5
一、教学目标:
1、理解一个数除以小数的计算方法,会计算除数是小数的除法。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。
二、教学重、难点。
重点:一个数除小数的计算方法。
难点:1、把除数转化为整数然后再除的方法。
2、确定商中小数点的位置。
预计教学时间:2节。
三、教学过程:
(一)基础训练。
【口算】。
2.8÷7=0.36÷12=5.05÷5=1.2÷4=。
2.6÷13=9.1÷7=10.2÷2=5.1÷3=。
(二)新知学习。
【典型例题】。
1、学习例5:
想:除数是小数怎么计算?
(1)小组讨论计算方法。
(2)独立完成。
(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。
2.学习例6,进一步体会小数除法的算理、算法。
(1)学生列出竖式,并说明意义。
(2)小组讨论算法。
(3)汇报:鼓励学生用自己的语言解释理由并进行交流。
【小结】怎样计算一个数除以小数?
(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。
(2)被除数位数不够,在末尾用“0”补足再除。
(三)巩固练习。
【基础练习】。
1.书p22做一做第一题。
2.书p22做一做第二题。
3.书p24第3题。
4.书p24第2题。
4、
【提高练习】。
5、书p24第4题。
6、书p24第5题。
7、书p25第6题。
8、书p25第8题。
能说一说其中的规律吗?
【拓展练习】。
9、书p25第7题。
10、书p25第9题。
(四)全课总结。
怎样计算小数除以整数?
(1)按整数除法的方法去除。
(2)商的小数点要和被除数的小数点对齐。
(3)整数部分不够除,商0,点上小数点。
(4)如果有余数,要添0再除。
(五)教学效果评价(小测题)。
1.计算下面各题。
26÷0.13=6.21÷0.03=210÷1.4=。
课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册) 篇八
知识重点[单击此处输入知识重点]。
教学难点[单击此处输入教学难点]。
教学用具。
教学过程教学方法和手段。
引入1大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
概念分析[单击此处输入教学过程]。
例题讲解【例1】。
一、引入新课:
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
二、新授:
1、出示例5。
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的'意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:12.6÷0.28。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
课堂练习1、书上第22页“做一做”
2、练习:判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
3、练习:书上24页的作业。
小结与作业。
课堂小结[单击此处输入课堂小结]。
本课作业[单击此处输入本课作业]。
课后追记。
本课又提高了一个层次,老师要把握好扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
教学内容p21~22。
教学目标初步掌握除数是小数的除法的计算法则。
知识重点应用商不变的性质,掌握除数和被除数小数点的移动方法。
教学难点p22例子6被除数小数位数少于除数小数位数情况的处理。
教学过程教学方法和手段。
引入让学生做p20页第11题。
被除数1.515150。
除数550500。
商
这就是“商不变的性质”
教学过程一、板书1.28÷4=0.32。
那么12.8÷40=?
0.128÷0.4=?
二、出示p21例5主题图:
组织学生分组讨论。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
二、例6。
被除数的小数位数少于除数的小数位数?
12.6÷0.28=。
课堂练习p22练习。
小结与作业。
课堂小结你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
本课作业[单击此处输入本课作业]。
课后追记。
应用被除数和除数同时扩大相同的倍数,商不变的性质应用于小数除法,扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
一个数除以分数教学设计6
教材分析:
本节根据已有的数量关系,引出一个数除以分数。在分数除以整数的基础上,研究一个数除以分数的计算是一个难点。教材以比较小明,小红两位同学谁走的快些,引导学生根据“路程=时间*速度”这个数量关系列出两个除法算式。算是列出后,请同学估一估是多少,然后想办法验证,这个环节激发了学生的探究欲望,又为发现除数和商之间的关系留下悬念。例3的设计体现了一种转化的思想。将图与文相对照进行解释,分析,说理,使学生在算理中感受到解决问题的科学性。
学情分析:
借助线段图引导学生一点点分析,说理,学生很快理解到要乘它的倒数,渗透了转化思想,学生易于理解。
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的.计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教学过程:
一、复习
1、列式,说清数量关系
小明2小时走了6km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4×3×2×6
÷4÷3÷2÷6
二、新授
1、默读例3,理解题意,列出算式:2÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
1小时走了多少千米,多少个小时走2km。
(3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2××3
(1)综合整个计算过程:2÷=2××3=2×
2、小结出计算法则:从上面这个推算过程,我们发现
一个数除以分数教学设计7
教学内容:课本10页例3、做一做、练习二第3、5、6、7题。
教学目标:
1、让学生在已有的分数乘整数的基础上,通过小组合作,自主探究建构,使学生理解一个数乘分数的意义,掌握分数乘分数的计算方法,能够应用分数乘分数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。
教学重点:让学生理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:总结分数乘分数的计算方法。
教学过程:
一、复习引入,提出学习目标。
1、复习。
计算下列各题并说出计算方法。
1/10×5/8×53/7×。
上面各题都是分数乘以整数,说一说分数乘整数的意义。
3、提出学习目标。
让学生先说一说,再出示学习目标。
二、展示学习成果。
1、小组内个人展示。
学生独立自学、完成课本10页例3、“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)。
2、全班展示。
(2)算法展示。
生1:不能约分,直接分子乘分子,分母乘分母。
1/5×3/4=1×3/5×4=3/20。
生2:先计算出结果,再进行约分。
8/9×3/10=8×3/9×10=24/90=4/15。
生3:在计算过程中能约分的先约分,再计算。
8/9×3/103与9先约分,8与10先约分,再计算。
2)比较二、三两种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
(3)错例展示:
错例1:约分后,把分子与分子相加,分母与分母相加;错例2:
学生没把计算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母,能约分的先约分,再计算。
三、拓展知识外延。
1、完成课本12至13页练习二第3、6题。
2、生活中的数学。
(1)一个长方形长3/5分米,宽1/2分米,它的周长、面积各是多少?
四、总结反思,激励评价。
五、布置作业:
1、列式计算。
(1)的`是多少?
(2)千克的是多少?
(3)小时的是多少?
2、智力冲浪:甲乙两个仓库,甲仓存粮30吨,如果从甲仓中1/5取出放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?(a类同学做)。
感谢您的阅读,本文如对您有帮助,可下载编辑,谢谢。
课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册) 篇四
班级姓名小组小组评价。
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p11页。
2、计算:
3、填空:
1)、×6表示();
×表示();
2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。
二、合作探究:
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积()另一个因数(0除外);
当一个因数小于1时,积()另一个因数(0除外);
当一个因数等于1时,积()另一个因数;
三、学以致用:
1、直接写出得。
2、
3、我能辩对错。(对的打“”,错的打“”)。
1)、一个数乘真分数,积小于这个数。()。
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。
3)、x××x()。
4)、分数乘法的意义与整数乘法的意义相同。()。
5)、如果a×=b×,那么a大于b。()。
4、解决问题:
1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?
【一个数除以分数教学设计】相关文章:
一个数除以分数教学设计11-20
一个数除以分数教学设计精品【5篇】07-06
分数除以分数教学设计05-20
《分数除以整数》教学设计05-06
一个数除以小数教学设计05-26
《整数除以分数》教学设计08-07
分数除以分数教学设计6篇06-25
分数除以分数教学设计(6篇)06-25
一个数除以分数教学反思(通用6篇)05-11
一个数乘分数的教学设计03-06