《点阵中的规律》教学设计

时间:2022-10-07 19:24:34 教学资源 投诉 投稿
  • 相关推荐

《点阵中的规律》教学设计

  作为一名无私奉献的老师,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?下面是小编为大家整理的《点阵中的规律》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《点阵中的规律》教学设计

《点阵中的规律》教学设计1

  目标预设:

  1、学生在生动有趣的活动中观察、寻找图形的特点,通过探索正方形点阵和长方形点阵的的规律,发现正方形数、长方形数的特点, 体会到图形与数的联系,感受数学的趣味;

  2、学生在探索感悟中体会到以形助数的直观生动性,尝试利用图形解决一些简单的问题;

  3、引导学生从不同的角度看事物,增强学生解决问题的信心。

  教学重点:

  通过探究点阵中的规律发现数的特征。

  教学难点:

  体会图形与数的联系,并灵活主动的解决问题。

  学情分析:

  《点阵中的规律》一课是数形结合思想在教材中的具体体现,通过一年级的找规律填数,二年级的按规律接着画,四年级探索图形的规律,学生已有一些初步感受和经历,但学生数形结合的主动性和操作能力还较弱。本节课主要通过对正方形、长方形点阵的研究,生动具体认识相同数(平方数)之积、连续数之积的特点,并试着解决一简单问题。五年级学生对数与图形已有较好的学习基础,数学教材中对因数、质数、合数等抽象概念的教学都是通过数形结合的思想方法来引导学生学习的,学生在解决问题时也通过画线段图、韦恩图、示意图以及表格等把数量关系转化为形象的数量关系,所以五年级的学生是具备用数形结合的方法分析问题的基础的。

  预设流程:

  一、谈话导入,感受点阵

  1、学生思考在每一册的数学里,除了数还有什么内容,体现图形的重要性。

  2、学生说出认识的图形。

  3、引出并感受生活、数学里的点阵。

  4、揭示课题。

  二、 探究正方形点阵,发现平方数的特点

  1、出示点阵,提出问题

  ⑴每个点阵可以看成什么图形?

  ⑵每个点阵分别有多少个点?

  2、探索点阵中的规律

  师:谁愿意来谈谈第一个问题?

  (可能会有学生认为第一个点阵不是正方形,引导学生认识到:边长是由几个点组成的,每个点可代表一个单位长度,点均匀分布,所以第一个点阵可看成是边长是一的点阵)

  师:第二个问题呢?

  生能很快说出点数。

  师:你是怎么得到每个点阵中点的个数的?

  (可能会有数与算两种方法,要求算的学生说出算式)

  引导学生认识到算正方形的面积就得到了点数。

  师:那我们看看这些从点阵中得到的数,你觉得它们有什么特点吗?

  3、借点阵研究平方数的'特点

  生:这些数都可以写成两个相同的数相乘。

  师:对,它们都是两个相同数之积,在数学里叫也正方形数或平方数。

  学生想第五个点阵的样子,再把它画出来。对画出的点阵进行划分,根据学生生成发现正方形数的主要特点。

  4、小结:平方数有什么特点?看到36这个数,你会想到一个什么样的点阵?根据这个图形,你能把36写成哪些有趣的算式?如果你以后忘记了平方数的特点,你会怎么办?(有意识引导学生回顾方法)

  三、自主探究长方形点阵,发现长方形数的特点

  1、出示长方形点阵。

  2、这是一个什么点阵?你能够根据你发现的规律,把第五个点阵图画出来吗?

  3、谁能快速的告诉我,每一个点阵中有多少个点?

  4、你是怎么算出来的?

  5、这些数还是相同数相乘吗?有什么特点?

  6、你能象刚才研究正方形点阵一样,通过研究长方形点阵的特点,发现连续数相乘的积的特点吗?(自主研究,汇报交流)

  7、小结

  三、拓展提高,解决问题

  1、感受点阵的数学、生活魅力。

  2、 数形结合,解决问题。

  板书设计:

  点阵中的规律

  正方形数 相同数 连续奇数 连续自然数—倒加

  1 =1×1

  4 =2×2 =1+3 =1+2+1

  9 =3×3 =1+3+5 =1+2+3+2+1

  16 =4×4 =1+3+5+7 =1+2+3+4+3+2+1

  25 =5×5 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1

  长方形数 ?

  教后反思:

  在对教材进行了深入的分析、挖掘和整合后,结合本次活动研究主题,把《点阵中的规律》分两课时进行,本课时以“数形结合”为主线,着重让学生通过研究正方形点阵、长方形点阵,发现相同数之积和连续数之积的特点;然后让学生在练习中感受到图形的直观形象,数的简洁细致;最后激发学生运用数形结合的思想解决一些有挑战性的问题。学习形式和课堂呈现上,高段学生对学习“有用”的数学应该更加感兴趣,所以,这节课主要用数学本身的内容来吸引学生,在研究几何形数的过程中丰富学生对数学发展的认识,感受数学文化的魅力。教学主要分三个层次:在教师帮助下研究正方形点阵,发现正方数的特点;运用这种研究方法自主研究长方形点阵;运用数形结合思想解决实际问题,感受数学的魅力。

  在课堂实践中,给了学生极大的探索自由,学生的思维非常活跃,对正方形点阵进行了多种角度的分析,深刻体悟到正方形数的奥妙,也获得了“借助点阵分析数”的方法。虽然课堂内未能按预设让学生对长方形数自主探索(时间不够,学生对正方形点阵很着迷,研究了很久),但相信他们已经有了自主发现的能力,课后,定能运用学到的研究方法去独立地研究长方形数的特点。

《点阵中的规律》教学设计2

  教学目标:

  1.在活动中,通过观察前后图形中点的变化规律,推理得出后续图形中点的数量,点阵中的规律教学设计教案。

  2、培养学生推理、观察、概括能力。

  教学重点:

  引导学生发现与概括规律

  教学难点:

  总结概括规律。

  教学准备:

  课件,汇报单,小奖品,磁扣等。

  教学过程:

  一.激趣导入,引出课题:

  师:今天的数学课,老师给大家带来了一个非常重要的图形,一定要注意观看啊。(课件出示一个圆点)。

  生:老师,就是一个圆点啊。

  师:是啊,点是几何中最基本的图形,可别小看这个点。许多点排列起来就组成一个有趣的点阵,比如:我们常玩的五子棋,围棋(出示五子棋,围棋的图片)都是由各个点组成的点阵。其实,两千多年前,希腊的数学家就开始研究点阵了。这节课,我们也来尝试研究点阵的规律,好吗?(板书课题——点阵中的规律)。

  二.课中参与,兴趣正浓:

  1、出示点阵,提出问题

  师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,数数每个点阵中分别有多少个点?

  生:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

  师:你能说一说你是怎么得到每个点阵中点的个数的吗?

  生:我是通过数出每个点阵中点的.个数得到的。

  师:谁还有不同的方法?

  生:我是通过计算得到的。

  师:能具体说一说是怎样通过计算得到的吗?

  生:第一个点阵有1个点;第二个点阵可以看成边长是2的正方形,共有2×2=4个点;第三个点阵可以看成边长是3的正方形,共有3×3=9个点;第4个点阵可以看成边长是4的正方形,共有4×4=16个点。

  2、探索点阵中的规律

  师:刚才,我们在研究这一组点阵中点的个数时,同学们研究得非常好,但是如果每个点阵中点的个数再多一些,又该怎样求出点阵中点的个数呢?(同桌之间讨论、交流)

  师:谁来汇报讨论的情况?

  生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,……也就是n×n

  师:总结得非常好,教案《点阵中的规律教学设计教案》。也就是说:用“横排数×竖排数”,对吗?(板书)你们能根据这一规律说出第五个点阵有多少个点,并画出此图形吗?(学生点子图上画第五个点阵图,展示)

  师:为什么这样画?

  生:因为前面四个都可以看作正方形,所以第五个图也是正方形。

  师:说得很好。请同学们再想一想,如果我们把第5个点阵中的点,按照这样的方法进行划分(出示教材第82页第(3)题图),看看你有什么发现?

  生:(小组内讨论交流)

  生:小组代表汇报。

  生:(总结)每用折线画一次后,点阵中的个数是:

  1=1

  1+3=4

  1+3+5=9

  1+3+5+7=16

  ………………

  生:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,……所有奇数相加的和。

  师:真了不起。这种划分方法,我们可以叫做“折线划分法”。通过研究点阵,我们发现这组正方形点阵中有很多规律。能用刚才的方法来研究长方形的点阵吗?

  生:可以。

  师:课件出示一组长方形的点阵。提问:你们能用刚才的两种方法发现这个点阵的规律吗?

  生:(1)。横排×竖排:1×2,2×3,3×4,4×5

  (2).折线划分法:2,2+4,2+4+6,2+4+6+8,2+4+6+8+10

  师:在点子图上画出第5个点阵。小组交流,研究:上面的点阵还有其他的规律吗?

  生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2

  (2).斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1

  师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

  生;1,1+2,1+2+3,1+2+3+4……

  三.应用新知,兴趣优在:

  师:其实,点阵是灵活多样的,每个点阵都有自己的规律。(课件出示练一练第2题)观察下图中的几个图形,小组内说说他们的规律,然后小组合作用老师为大家准备的学具粘出下一个图形。

  生:汇报,展示。

  四.课末设计,兴趣高涨:

  师:刚才,我们共同研究了一些点阵的规律。现在,你想自己设计一个点阵吗

  生:想。

  师:好。接下来,我们就以小组为单位,开展一个点阵设计大赛,好吗?课件出示要求:

  点阵设计大赛

  1、设计时间:5分钟

  2、设计要求:(1)小组合作,共同设计一幅有规律、美观的点阵图,画出前4个点阵,并用算式表示每个点阵的数量.

  (2)每组派代表说明设计的方法及点阵中的规律,并展示作品.

  (3)优秀小组的作品,在班级”展示台”展出.

  生:小组内自由设计,展示。

  五.联系生活,兴趣永存:

  师:看来,同学们各个都是个出色的小设计师啊!点阵的规律,活中也十分常见。比如:(课件出示图片)一些大型活动的展示标志,广场上美丽的花坛,由点阵构成的各种图案等等。可以说,生活中,处处离不开点阵的规律,离不开数学的知识。对吗?那么,就让我们用希腊数学家普洛克拉的一句话结束今天的学习:

  哪里有数学,哪里就有美!数学美把自然规律抽象成一幅简洁准确的图像。

  ——古希腊数学家:普洛克拉

《点阵中的规律》教学设计3

  一、教学内容:

  新世纪版小学数学五年级上册《尝试与猜测》中的第二课时。(教科书第82、83页。)

  二、教材分析:

  1、这是一段“探索规律、策略多样”的发现之旅。

  教材开头有这样两句话:阿拉伯数字的发明,使我们记录和计算更加方便,然而在表现一些数的特征方面,点阵更加直观;20xx多年前,希腊数学家利用图形研究数。短短两句话,数学带着其精练、思辨、冷静的迷人魅力从厚重、光辉的历史中走来,一种研究数学的使命感油然而生,在这浓浓的数学味道里,学生开始了对点阵规律的发现之旅。教材首先给出了最为典型的正方形点阵,通过对其规律的探究,建立起点阵与数、与算式之间的联系。并且从不同角度,不同的划分方法中发现不同的规律,从而让学生体会到点阵研究数的形式是多样的,渗透解决问题的策略多样化。在此基础上再研究长方形、三角形、以及特殊形状的点阵。通过这些数学素材,引导学生探索规律,归纳概括,建立模式。

  2、这是一次“尝试猜测,归纳概括”的方法会师。

  教材将“点阵中的规律”和“鸡兔同笼”两个内容都划分在尝试和猜测这个章节中,在教学“鸡兔同笼”的问题时,教材运用表格、计算,让学生不断地进行尝试,猜测,验证,不断地调整自己的猜测,直至得到正确的结果,并在经历了曲折的尝试和猜测之路后,学会选择最优的策略。在探索点阵中的规律时,也是一样的,要求学生大胆猜测点阵的变化规律,并加以验证。从一组点阵的变化中,抽象概括出规律的本质,并加以归纳推理。因此“点阵中的规律”这个内容是培养学生抽象概括、归纳推理的能力的最好素材。

  3、这是一场“数形结合,数形转化”的思想盛宴。

  数形结合是数学解题中常用的思想方法。“点阵中的规律”这一课特别适宜于学生充分感受“数形结合”的思想魅力。教材一开始就呈现古代希腊数学家们用图形来研究数的情境。在正方形点阵的研究中,教材从三种不同的角度引导学生观察点阵,列出不同的算式,发现不同的规律,从得出像1、4、9、16……这样一组数所具备的三种不同特点。这组数既可以看作为一组连续的完全平方数,也可以看作是几个连续奇数相加,还可以看作是从1连续加到几,再加回到1。这是一个从形到数的过程。教材在学生概括规律,归纳推理出下一个点阵的点数后,又让学生画出这个点阵图,这是一个从数到形的过程。充分体现了“数形结合,数形转化”的思想方法。

  三、学生分析:

  1、学生的知识基础

  五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

  2、学生的能力基础

  学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。北师大版的数学教材中许多抽象概念的教学都是通过数形结合的思想方法来引导学生学习的,比如通过画线段图、韦恩图、示意图以及表格等将抽象的数量关系转化为形象的数量关系,所以五年级的学生具备用数形结合的方法分析问题的基础的。

  但是小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

  3、学生的情感态度基础

  小学生好奇心强,对新奇的事物感兴趣,点阵对于学生是完全新鲜的,因此学生研究的兴趣比较浓厚,课堂的注意力会比较集中。但这一课的抽象性也会使学生的兴趣停留在短暂的直接兴趣,很难转化为对数学研究的间接兴趣。因此我们在教学中根据小学生的心理年龄特点,将这些单调静止的点阵图加以生活化、童趣化、动态化。

  四、教学目标:

  1、能观察发现点阵中的规律,体会“图形与数”的联系。

  2、发展归纳和概括的能力。

  3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

  五、教学重、难点:

  探究发现点阵中的规律是教学的重点。难点是独立发现同一点阵中不同的规律。

  六、教法上的突出特点:

  1、用儿童喜闻乐见的情境演化出各种点阵,从而激发学生研究的兴趣。

  2、尽量减少教师的介入,让学生或独立或合作探究规律。

  3、鼓励学生有自己的发现、有不同的发现。

  七、学法上的突出特点:

  1、让学生多角度探究规律,充分感受美图美思。

  2、大胆让学生画一画、摆一摆、算一算,大胆说出自己的发现。

  3、本节课以独立研究为主,辅以合作交流。

  八、教学过程

  (一)激情导入,抛砖引玉

  同学们,见过阅兵式吗?(出示阅兵式录象)。这些解放军战士的队伍排得多么整齐啊!如果我们用一个点表示一个士兵,那么由战士组成的兵阵就变成了我们今天要学习的点阵。(板书课题:点阵中的规律)

  (课一开始,先用雄壮的阅兵式导入新课。这样一下子就抓住了学生的注意力,接着又出人意料地把兵阵变成点阵,不仅自然地引出了新课,还让学生感到点阵并不神秘,点阵就在我们生活中。这种先声夺人的开篇,为学生下面的学习作好了情感上的准备。)

  (二)多方观察,探求规律

  出示第一幅点阵图。

  1、一探

  “图中有几个点阵,每个点阵各有几个点?”

  “怎么数得这样快?有窍门吗?”

  这时学生会说:“我是用算式算出来的。”教师根据学生的回答,板书第一组算式

  第1个1×1=1

  第2个2×2=4

  第3个3×3=9

  第4个4×4=16

  (一个“算”字,使学生的思维顺利的实现了由形——数的第一次转换。)

  师:“这种数法真是又快又方便!照这样下去,第五个点阵有多少个点呢?第六个呢?第七个?八个?……第100个呢?”

  师:“好像很有规律哦?谁发现了?”

  (有了前面的铺垫,学生很容易就总结出“第几个点阵就用几乘几”,也有的学生会说,“第几个点阵就是几的平方。”)(教师板书:)

  师:那第n个点阵呢?你们能画出第五个点阵吗?

  (这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

  师:“能不能换个角度观察?”

  2、二探

  (电脑演示)“斜着看又可以得到什么新的算式呢?请同学们独立思考,写出算式,然后汇报。”(教师板书:

  第1个:1=1

  第2个:1+2+1=4

  第3个:1+2+3+2+1=9

  第4个:1+2+3+4+3+2+1=16)

  “谁发现什么规律呢?”

  “如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

  3、三探

  师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(课件演示)

  小组讨论,列出算是,全班汇报。

  有的学生可能说:“这次都是奇数相加。”

  教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

  通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

  4、四回味

  师:同学们,黑板上的三组算式的.得数分别相等。我们可以用等于号将它们连接起来。这样,一个数的平方可以写出三种不同的算法。我出两题考考大家。

  出示:1+2+3+4+5+6+7+6+5+4+3+2+1=()

  1+3+5+7+9+11+13=()

  (在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)

  最后教师小结,刚才我们从三个不同角度观察同一组正方形点阵,得到了三条不同的规律,也许再换一个角度观察,还可以得到新的规律,今天暂不作研究。接下来我们一起来研究其它形式的点阵。自然地过渡到下一教学环节。

  (在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)

  (三)、融练于趣,陶情审美

  练习共分五关

  第一关:探密武僧阵

  第二关:解读荷塘图

  第三关:智走梅花桩

  第四关:自创点阵图

  第一关即书中试一试第一题,全班说算式,点答说规律。

  第二关即书中试一试第二题,学生独立列算式,互相说规律,全班交流。

  第三关即书中练一练第二题,这道题难度较大,我结合创设的情境具体指导:“

  指第一个,走了几个梅花桩?指第二个,增加几个桩,增加了一个什么形状?指第三个,又增加了几个桩,又增加了一个什么形状?如果再往下走,再多走几个桩,又增加了一个什么形状?你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

  (这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)

  (我们以学生最熟悉的乌龙院师兄弟为主角,以帮助乌龙师兄弟闯关为线索,以练习的题目为闯关内容,将所有的练习串连起来。这种形式使学生眼前一亮,把枯燥的练习,变成了学生喜闻乐见的活动,激发学生的研究兴趣。)

  第四关:自创点阵图

  师:同学们今天学习了这么多的点阵,有正方形的、长方形的、三角形的,多边形的等等。能不能自创新的点阵呢?这里有三个不同层次的自创点阵的活动。

  第一层次是提供一组图形让大家在上面布点。

  第二层次是提供一组数字让大家设计出点阵。

  4、8、12、16

  第三层次是完全自创点阵。同学们可以选择适合自己的来做。

  最后,展示学生作品,结束全课。

  (这样的教学体现了让不同的学生学习不同的数学,让不同的学生都有所收获)。

  全课总结:同学们,我们今天研究了点阵中的规律,用点阵图发现了一些数的特征。其实在两千多年前,希腊数学家们已经利用图形来研究数。由于图形具有直观形象的特点,会使抽象的数学问题便得生动具体,是我们学习数学的一大法宝,我们以后在研究数学问题时,要学会利用图形来帮助解决。