数学二次函数教学设计

时间:2022-10-08 00:42:22 教学资源 投诉 投稿
  • 相关推荐

关于数学二次函数教学设计

  作为一名无私奉献的老师,通常会被要求编写教学设计,教学设计是一个系统化规划教学系统的过程。教学设计要怎么写呢?以下是小编精心整理的关于数学二次函数教学设计,欢迎阅读,希望大家能够喜欢。

关于数学二次函数教学设计

  数学二次函数教学设计1

  教学目标:

  1、理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2、通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3、通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一、创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1、写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2、①

  2、写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的`关系

  答:S=L(30-L)=30L-L2②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二、归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

  那么,y叫做x的二次函数、

  注意:

  (1)必须a≠0,否则就不是二次函数了、而b,c两数可以是零

  (2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数

  练习:

  1、举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2、出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如:;;;的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三、尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1、1、尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  数学二次函数教学设计2

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym

  2、试将计算结果填写在下表的空格中,

  3、x的值是否可以任意取?有限定范围吗?

  4、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定。

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件、该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:

  1、商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

  [(10-8-x);(100+100x)]

  4、x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5、若设该商品每天的.利润为y元,求y与x的函数关系式。

  [y=(10-8-x)(100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0<x<10=化为:

  y=-2x2+20x(0<x<10)

  三、观察;概括

  1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函

  数y取得最大值。

  2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项、

  四、课堂练习

  1、(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1(2)y=4x2-1

  (3)y=2x3-3x2(4)y=5x4-3x+1

  2、P3练习第1,2题。

  五、小结

  1、请叙述二次函数的定义、

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:

【数学二次函数教学设计】相关文章:

二次函数的教学设计04-01

数学二次函数教学反思04-22

二次函数教学反思02-13

初三二次函数教学反思06-17

二次函数图像教学反思12-01

函数教学设计07-28

二次函数教案07-28

《二次函数》教案03-02

《幂函数》教学设计11-22

高中数学《集合与函数概念》教学设计10-07