《方程的意义》教学设计

时间:2023-05-07 10:05:23 教学资源 投诉 投稿

《方程的意义》教学设计范文(精选6篇)

  作为一名教职工,常常需要准备教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。怎样写教学设计才更能起到其作用呢?下面是小编帮大家整理的《方程的意义》教学设计范文(精选6篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

《方程的意义》教学设计范文(精选6篇)

  《方程的意义》教学设计1

  教学目标:

  1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。

  2、借助天平让学生理解方程及等式的意义。

  3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。

  教学过程:

  一、创设情境,激趣导入。

  谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)

  我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。

  二、合作探究,获取新知。

  (一)理解等式的意义。

  找出白鳍豚这组资料的`等量关系,用字母表示。

  1、师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?

  1980年比2004年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。

  1980年只数—2004年只数=300只

  1980年只数—300只=2004年只数

  2004年只数+300只=1980年只数

  2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出2004年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)

  3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)

  4、借助天平来研究等式。

  (出示天平)你对天平了解多少?谁给大家介绍一下?

  师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。

  师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10<20)如何才能平衡呢?(左再放一个10克的砝码)

  师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)

  师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)

  (二)理解方程的意义。

  1、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

  师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:

  (1)找出人工养殖的只数与野生的只数的关系,用文字表示出来。

  (2)用含有字母的等式表示出这个关系。

  (3)在天平上表示出这个等式。

  小组合作探讨,汇报交流,得出:人工养殖的只数x10=野生只数

  10x=1600,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600

  只。我们通过分析它们之间的等量关系得出了等式10x=1600。

  2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

  师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)2003年只数×3+100=2010年的只数。

  (2)3×+100=1000或1000-3×=100(3)天平左盘3x和100,右盘1000。

  我们通过分析它们之间的等量关系得出了等式3x+100=1000。

  3、揭示方程的意义

  师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)

  我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)

  师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。

  师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)

  师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?

  三、巩固练习,加强应用。

  看来同学们已经掌握了今天所学的知识,下面老师来考考你。

  课件出示课本自主练习1,2,3,4。

  四、回顾反思,总结提升。

  通过这节课的学习,你有什么收获?

  《方程的意义》教学设计2

  一、教学内容

  "义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义

  二、教材分析

  方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃。方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石。

  三、教学目标

  根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

  1、使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系。

  2、经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感。

  3、让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系。

  四、教学重点,难点

  教学重点:理解方程的含义,以及在具体的情境中建立方程的模型。

  教学难点:正确寻找等量关系列方程。

  五、教学设想

  概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程。经历从具体-----抽象------应用的认知过程。

  六、教学准备:课件,天平,实物若干等

  七、教学过程:

  课前准备:利用学具(简易天平)感受天平平衡的原理。

  教学过程

  学生活动

  设计意图

  一、创设情景,建立表象

  1、认识天平。

  2、同学们通过课前的实际操作你发现要使天平平衡的条件是什么

  (天平两边所放物体质量相等)

  3、用式子表示所观察到的情景:

  情景一:导入等式

  (1)天平左边放一个300克和一个150克的'橙子,天平的右边放一个450克的菠萝

  300+150=450

  (2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

  250+250+250+250=1000

  或250×4=1000

  情景二:从不平衡到平衡引出不等式与含有未知数的等式

  (1)

  在杯子里面加入一些水,天平会有什么变化

  要使天平平衡,可以怎么做

  情景三:看图列等式

  (1)

  x+y=250

  (2)

  536+a=600

  直观认识天平

  回忆课前操作实况理解平衡原理

  观察情景图,先用语言描述天平所处的状态,再用式子表示

  先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解

  观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态

  数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义。

  通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系)。

  《方程的意义》教学设计3

  教学内容:

  苏教版教科书第1~2页的内容。

  教学目的:

  ⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。

  ⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象能力和符号感。

  ⑶学生在数学活动的过程中,养成独立思考、主动与他人合作交流等习惯,获得成功的体验,培养对数学的学习兴趣。

  教学流程:

  一、情景引入,初步展开新课。

  ⑴出示“天平”情景图,了解学情。

  让学生说说,你知道了什么?

  天平;两边是一样重的.;指针在中间表示就表示相等等等。

  ⑵用等式表示天平两边物体的质量关系。

  先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。

  二、继续出示情景图,深入展开新课。

  ⑴出示情景图,明确要求。

  用式子表示天平两边物体的质量关系。

  ⑵独立思考,试写式子。

  学生在书上独立填写。

  ⑶学情反馈,班级交流。

  让学生自行上黑板写不同的式子。

  可能会出现下面这些式子:x+50>100,x+50≠100,x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等。

  甄别确认正确答案。

  ⑷尝试分类,理解方程的意义。

  明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。

  再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。

  ⑸体会等式和方程的关系。

  用符号表示等式和方程的关系,例如集合图等;用形象的情景表示等式和方程的关系,例如部分和总数等。

  三、独立练习,进一步内化新知。

  ⑴完成练一练1。

  确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和方法;交流矫正。

  ⑵下面哪些是等式,哪些是方程?用线连一连。

  9—x=320+30=50

  80÷4=20等式x+17=38

  x—15方程36+x<40

  7y=6354÷x=9

  ⑶完成第2页试一试和看图列方程。

  先独立列方程,再在小组里交流列式的思考。

  ⑷完成练习一1~3。

  重点交流第2题。

  《方程的意义》教学设计4

  教学目标:

  初步理解方程的意义,会判断一个式子是否是方程。

  会按要求用方程表示出数量关系。

  培养学生观察、比较、分析概括的能力。

  教学重难点:

  会用方程的意义去判断一个式子是否是方程。

  教具准备:

  天平、空水杯、水(可根据实际变换为其它实物)

  教学过程:

  导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  新知学习

  实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的.质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  反馈练习。

  完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  小结。

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看“课外阅读”,了解有关方程产生的数学史。

  练习

  完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

  独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

  作业

  练习十一第1题。

  《方程的意义》教学设计5

  教材分析:

  方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个什么样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,从而由不等到相等,引出含有未知数的等式称为方程。

  在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小朋友写方程,让学生初步感知方程的多样性。

  “做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。

  “你知道吗?”的阅读资料简要介绍了有关方程的一些史料。让学生只需感知,不作记忆的要求。

  学情分析:

  五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,从而理解概念,帮助学生更好的学习。

  教学目标:

  1、通过天平演示,使学生初步理解方程的意义;

  2、使学生能够判断一个式子是不是方程并能解决简单的实际问题;

  3、培养学生观察、描述、分类、抽象、概括、应用等能力。

  重点难点:判断一个式子是不是方程;初步理解方程的意义。

  课前准备:课件、天平、带有磁铁的卡纸、彩色记号笔。

  教学过程:修改意见

  一、复习旧知,激趣导入

  同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

  二、创设情景,导入新课

  1、同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和爸爸一起玩,会出现什么样的结果?(翘翘板摇晃不平衡)

  师:怎样才能保持两边平衡呢?(让妈妈也加入)

  小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。

  三、探究新知

  1、师:在数学中与翘翘板原理一样的工具,你知道是什么吗?(生答:天平)

  2、介绍:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。

  3、课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100g重的砝码,正好平衡。

  师:请看这幅图。

  思考:看了这幅图你知道了什么?生答。

  师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)

  4、课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100g重的砝码,天平左低右高。

  师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。

  问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)

  问:如果水重x克,你能用一个式子表示天平两边的结果吗?

  生回答后,课件、卡片出示:100+x>100

  5、课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100g重的砝码,天平还是左低右高。

  师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的'质量。

  师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100g重的一个砝码。(课件演示:右盘上再放100g重的砝码,天平出现左高右低。)

  师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。

  学生回答后课件、卡片出示:100+x<300

  问:观察列出的两个式子,有什么共同的地方?

  这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)

  问:能再举几个这样的不等式吗?

  (学生列出不等式,教师选择两个写在卡片上贴于黑板。)

  6、课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250g重的砝码,天平平衡。

  师:下面老师把其中一个100g重的砝码换成50g重的砝码。你再来观察一下。

  (学生看到都说:平衡了)

  问:谁来表示这个式子?

  学生回答后课件、卡片出示:100+x=250

  问:为什么用“=”呢?(平衡就是相等了)

  问:哦,那这个式子与刚才两个不等式比较最大不同是什么?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)

  问:能再举几个这样的等式吗?

  (生举例,教师选择三个写在贴于黑板的卡片上。)

  这时黑板上的卡片有:

  300+200=500100+x<300

  100+x>100100+x=250

  80+x>100100+50<300

  5×a=40x+200x+x=8

  三、探究交流,抽象概括

  1、分类、建构概念

  让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。

  学生讨论。

  问:谁来说说你们是按照什么标准分的?

  (1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。

  (2)让按“是否含有未知数”分的学生把式子分成两堆。

  问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(含有未知数)那这几个呢?(没有未知数)

  问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。

  (或者让按“是否是等式”分的学生把式子分成两堆。

  问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(是等式)那这几个呢?(不是等式)

  问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。

  根据学生的思路来讲。)

  问:你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

  师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)

  2、理解、巩固概念

  师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)

  师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。

  写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。

  小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

  (出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

  6+x=143+x50÷2=25ab=18

  6+x>2351÷a=17x+y=18

  问:通过这几道题的练习,你对方程有了哪些新的认识?

  (1)未知数不一定用x表示。

  (2)未知数不一定只有一个。

  四、巩固提高,形成技能

  1、判断

  下边哪些式子是方程?(课本54页“做一做”)

  35+65=100x-14>72

  y+245x+32=47

  28<16+146(a+2)=42

  2、你知道吗?

  课件动态显示关于方程的小知识。

  你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

  3、练练思维

  孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?

  某同学今年的年龄的2倍是22岁,他今年几岁?

  4、提高智慧

  小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?

  5、数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)

  (1)□+x>40(不是)

  (2)x÷□=80(是)

  (3)3×□=24(不一定)

  让学生判断并说明理由。

  (第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)

  五、总结提升。

  回想一下刚才我们上课开始写的那个表示我们全校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!

  作业设计:

  1、作业本25页。

  2、口算一页。

  板书设计:

  方程的意义

  其他式子

  含有未知数的等式

  3077+x

  等式

  不等式

  像这样含有未知数的等式,叫做方程。

  《方程的意义》教学设计6

  教学目标

  1、结合操作活动使学生初步理解方程的意义。

  2、会用含有未知数的等式表示等量关系。

  3、感受方程与现实生活的密切联系,体验数学活动的探索性

  教学重点:结合具体情境理解方程的意义,能用方程表示简单的等量关系。教学难点:能用方程表示简单的等量关系。

  教学过程

  活动一:

  谈话导入:同学们,你们知道我们国家的国宝是什么吗?对,大熊猫是我国一级保护动物,更是我国外交活动中表示友好的形象大使。动物园的叔叔正在科学的喂养大熊猫呢!

  出示信息窗一,引导学生观察情境图,阅读文字信息。

  学生观察主题图,认真阅读信息。

  活动二:借助天平理解等式。

  分组实验:

  ①天平左盘放一个10克的砝码,右盘放一个20克的砝码,天平不平衡,可以用式子10<20表示;

  ②在左盘再放上1个10克的砝码,天平平衡了,用等式10克+10克=20克表示。

  分组实验:天平左盘放一个20克的砝码和一个不知重量的方木块,右盘放一个50克的砝码,一成天平平衡,用等式20+=50表示。

  小结:等式表示相等的.关系。

  活动三:概括方程的意义。

  师:观察黑板上的三个式子:+20=70、2=150、3+10=100,你有什么发现?

  学生自由谈想法??

  小结:像+20=70、2=150、3+10=100这样含有未知数的等式,叫做方程。

  活动四:方程与等式的关系

  想一想,等式和方程之间有什么关系?

  小组讨论

  小结:方程的范围比较小,等式的范围比较大,方程只是等式的一部分。活动七:自主练习

  1、判断哪些式子是方程。

  师:你认为一个式子是方程必须具备哪些条件?

  小结:同时具备“含有未知数”、“相等的式子”这两个条件才是方程。学生独立完成自主练习第1题。(引导学生在判断对错的同时,说出判断的依据。)

  2、看图列方程。完成自主练习第2题。要求学生先找出图中数量间的相等关系,再独立列出方程。(集体交流)

  3、完成自主练习第3题。(让学生独立写出等量关系式并列出方程,再进行交流。)

  活动五:全课总结:

  引导学生谈谈这节课有什么收获?

  学生谈收获,并找出不懂的地方。

【《方程的意义》教学设计】相关文章:

方程的意义教学设计10-07

方程的意义教学设计03-20

《方程意义》教学设计05-15

方程的意义教学设计06-30

方程意义教学设计05-22

方程的意义教学设计(15篇)05-05

方程的意义教学设计18篇04-05

方程的意义教学设计15篇04-05

方程的意义教学设计精选15篇05-15

方程的意义教学设计(18篇)04-12