数列教学反思

时间:2023-05-07 04:10:58 教学资源 投诉 投稿

数列教学反思范文(精选7篇)

  身为一位优秀的教师,课堂教学是重要的任务之一,借助教学反思可以快速提升我们的教学能力,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的数列教学反思范文(精选7篇),欢迎阅读与收藏。

数列教学反思范文(精选7篇)

  数列教学反思1

  今年已是第二次教这章,总得来说数列也是在函数的基础进一步加深对函数的理解,因为数列是特殊的函数,因此在教学中要把握这点。在数列这章中,要记忆的内容很多,不过也是有规律可循的。

  由于在整章中主要教授四个内容:等差、等比数列及其性质、数列的通向公式的求法、数列的前n项和的求法。但是,这里面等比等差数列又是平行概念,因此总的来说,只有三大板块。在教学中,我按分版块的思路将本章内容进行教学。

  值得一提的.是,由于在等差数列中的性质很多,又很杂,但是使用率又相当的高,为此我采用的是由题引出结论,让学生先有切身体验,再进行讲解,这样使其感受到用性质解题远远比用定义简单得多,从而促使其自觉地使用性质,而且所有的性质我都是从所给的例题中让学生自觉总结归纳出来的,这样比我直接给出性质再让他们用效果好的多。在学好等差数列的性质的基础上,让学生对照等差学等比数列的内容,一是让其注意二者的共同点,二是让其注意到二者的本质区别。从而减轻学习负担。这样的效果是可见的,学生在对照的基础上加深对知识的理解,通过相应的练习使其掌握知识并自己的运用知识。

  学生给我说,他们总觉得这章的内容很多很杂,好像一个题可以用到很多的性质,但是正确的选择一个或者几个性质会使得问题变得简单,但是往往又不知道到底该用哪个性质来解相应的题。对于这个问题我也在思考,对于这样的内容该如何很好的教学,即达到效果又减轻学生的学习负担,因此找出对照学习的方法。对于性质的运用,则采用一对一的例讲及练习,达到例题示范及对应练习。最后再用综合试卷检查学生的学习效果及自己的教学方法是否达到目的。

  数列教学反思2

  探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,而是通过数学建模活动启发学生,引导学生从实际情境中发现规律。类比等差数列通项公式的获得过程,寻求等比数列中四个量之间的关系,引导学生利用迭代法及叠加法得到等比数列的通项公式 。在教学活动中渗透了数学建模的思想。

  在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。

  本节课后,最大的一个感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,而且内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。

  本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导。由于前边已经学习了等差数列的有关内容,本节课主要就是采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有条理,课件展示得当,时间把握恰当。

  就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的`满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。

  课后反思,使我更深刻地认识到教学不仅是一门学问,也是一门艺术,值得我们在日常教学中不断探索,不断学习,不断研究,不断反思,只有这样才能不断地进步。这也为我以后的教学奠定了很好的基础,让我明确了自己今后努力的方向。在今后的教学中我会不断地反思,寻找不足,争取更大的进步。

  数列教学反思3

  这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

  (一)对课前备课的反思

  首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。

  其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。

  第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

  (二)对课中教学的反思

  这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

  (1)学生的创新解答

  在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

  (2)课堂中的偶发事件

  在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

  (三)课后反思,再设计

  一节课下来,我摸索出了一节课的'设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

  数列教学反思4

  根据上午说课后其他老师的建议,我做了修改:

  (一)引入部分简化,斐波那契数列的学习同样也运用了化难为易的思想,在刘xx老师的授课《斐波那契数列》中多次提到难易的转化,我们的学生也认真地进行了这节《斐波那契数列》的学习,给我们的学生试课可以这样引入:

  孩子们,我们在学习《斐波那契数列》时是怎么发现小兔子数量的规律呢?对,化难为易,我们可以用化难为易的`方法解决很多问题,那老师请你们来试试连线游戏,在平面上有100个点,这些点能连成多少条线段?

  学生回答不上来时,教师指导:100个点连线有点多有点难,老子说:“天下难事做于易。”我们就从最简单的两个点开始研究,用数学的思考方法解决点连线的问题。这样的引入斐波那契数列就不只是欣赏,而是数学思考方法的延续。可是,不知道其他学校的教师能否重视教材65页的阅读资料《斐波那契数列》,所以还是没底。

  (二)探究过程的连线过程又做了一遍,原来用了四张幻灯片而且一直一闪而过,感觉有点杂有点多,我修改用一个表格一张幻灯片呈现,这样就不觉得繁杂。这点怪我有点懒了,用别人现成的,所以今天又用了半个下午修改了一遍。

  数列教学反思5

  在等比数列的教学中,特别是探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,这样很容易让学生思维僵化而且并没有起到让学生归纳类比的思想。所以在教学中通过建模活动启发学生,引导学生从实际情境中发现规律,类比等差数列通项公式的获得过程,寻求等比数列中首先,公比,项数,第n项这四个量之间的关系,引导学生用迭代法及叠乘法得到等比数列的通项公式 。

  在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的.知识的有关联系,感受数学的整体性。

  在这一节课后,一个很大的感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,要能启发学生,内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。

  本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导和分析应用。在前面的教学中,学生已经有了等差数列的有关内容,这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有待改进,课件展示得当,但时间把握有点仓促。就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。

  经过这次公开课,另外一个重要的收获是我们备课的时候一定要认真备好三维目标,特别是情感价值态度。只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。

  经过四年的教学让我认识到教学不仅是一门学问,也是一门艺术。教学需要我们在日常教学中不断总结和探索,不断学习,不断研究反思,这样才能在教学中进步和创新。

  数列教学反思6

  《数学新课程标准》指出:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。在教学本节课时,我力求通过创设一个又一个的活动情境引领着孩子们去体验、去感悟、去经历数学化的过程,使孩子们的思维火花不断地在课堂中迸发出来。

  教学中我首先考虑的是如何充分调动学生的主动性与积极性,通过引导他们开展观察、操作、比较、概括、猜想、推理、交流等多种形式的活动,学生初步学会从数学的角度去观察事物和思考问题,从而产生学习数学的.愿望和兴趣。

  其次,为学生创设一连串能真正激起学生进行自我探究与发现问题的情境,如结合百数表、数射线探究:有什么好办法很快找到一个数的相邻数?你是怎样找与一个数相邻的整十数的?使他们积极主动地去思考。同时,注重开发书上的例题与习题的功能,结合学生已有的生活经验,让他们在创造的活动中学数学,培养学生各方面的思维能力,让不同的学生在学习上有了不同的发展。

  我觉得数学认知结构的完善和再发展也是学生数学学习的一个重要组成部分。本节课的教学过程,打破了传统教学中新旧知识的界限,注重了一个整体:新知的探究与旧知的回顾及整理一起,让学生从整体上把握知识的脉络,如教学的重点(通过+1、—1得到一个数的邻数)结合百数表的知识得以把握;教学的难点(如何使一个数回到整十数和进到整十数)通过对数射线知识的巩固得以突破,促进了学生认知的再发展,建构了数学的知识结构,更为后继两位数加减一位数的学习奠定基础。

  整堂课我有意识地创设一种民主、宽松、和谐的课堂气氛,创设好一个有利于学生探索、发现、创新的教育氛围,把传统的教师“讲数学”变成了学生“做数学”的活动,学生笑着学习,增强了学习的自信心。

  数列教学反思7

  数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

  利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

  给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的'值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

  为了提高学生的反应能力,我从最简单的数列——正整数数列——开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

  通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

【数列教学反思】相关文章:

《数列》教学反思10-06

数列求和教学反思04-14

等差数列教学反思04-14

等差数列的教学反思10-06

《等差数列》教学反思(精选9篇)08-18

《数列》高二数学教学反思范文(通用13篇)03-27

数列的教案03-26

《等比数列的前n项和》教学设计10-06

高三数学数列教案10-12