《圆锥的体积》优秀教学设计(精选15篇)
作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?下面是小编为大家整理的《圆锥的体积》优秀教学设计,希望能够帮助到大家。
《圆锥的体积》优秀教学设计 1
教学过程:
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)
6、练习(出示)
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。
7、得出圆锥的体积计算公式。
8、用字母表示圆锥的体积计算公式。
三、巩固练习。
1、计算下面圆锥的体积。(只列式不计算)
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
a圆锥的体积=(),用字母表示是()。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)
a圆柱体的体积一定比圆锥体的.体积大()
b圆锥的体积等于和它等底等高的圆柱体的()
c正方体、长方体、圆锥体的体积都等于底面积×高。()
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
《圆锥的体积》优秀教学设计 2
教学内容:小学数学人教版第12册42页—43页
教学目标:
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3、培养学生个人的自主学习能力和小组合作学习的能力。
教学重点和难点:掌握圆锥体体积公式的推导。
教具准备:
1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。
2、多媒体课件设计
教学过程设计
(一)复习准备:
1.怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
3.圆锥有什么特征?
学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。
(二)导入新课
今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)
(三)进行新课
1、探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:圆柱——(转化)——长方体圆柱体积公式——(推导)长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
A.谁来汇报一下,你们组是怎样做实验的?
b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的`圆柱体和圆锥体。)
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。
(三)巩固反馈
1.例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
A学生完成后,进行小组交流。
B你是怎样想的和怎样解决问题。(提问学生多人)
C教师板书:
×19×12=76(立方厘米)
答:它的体积是76立方米
2.练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3、出示例2:要求学生自己读题,理解题意思。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.2×表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
4、比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;
(2)例1是直接求体积,例2是求出体积后再求重量。
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
四、巩固练习:
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()
⑴立方米②3a立方米③9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米
(1)6立方米(2)3立方米(3)2立方米
2、学生操作:
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。
五:这节课你有什么收获?
六、作业:
书本44页第3、4、5。
《圆锥的体积》优秀教学设计 3
一、教学目标
1、知识与技能:通过实验探究,使学生理解和掌握圆锥体积的计算公式,并能灵活运用公式计算圆锥的体积,解决一些实际问题。
2、过程与方法:通过小组合作、实验观察、归纳推理等过程,提高学生的实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度与价值观:使学生在经历中获得成功的体验,体验数学与生活的联系,培养学生的数学学习兴趣和探究精神。
二、教学重难点
1、教学重点:掌握圆锥体积的计算公式,并能应用公式解决实际问题。
2、教学难点:理解等底等高的圆锥体和圆柱体的关系,以及圆锥体积公式的推导过程。
三、教学准备
多媒体课件:用于展示圆锥的体积计算公式推导过程、例题解析等。
实验器材:等底等高、等底不等高、等高不等底的圆锥和圆柱容器,沙子或水,量筒,带有刻度的直尺等。
实物模型:不同形状的圆锥体实物,如小丑帽、重锤等,帮助学生建立圆锥体的表象。
四、教学过程
1、导入新课
通过复习圆柱体体积的计算公式,引出本节课的`主题——圆锥的体积。展示圆锥体实物模型,让学生观察圆锥体的特征,激发学生的学习兴趣。
2、探究新知
(1)实验探究:让学生分组进行实验,将等底等高的圆锥容器装满沙子或水,然后倒入圆柱容器中,观察几次可以倒满。通过实验,引导学生发现等底等高的圆锥体体积是圆柱体体积的1/3。
(2)公式推导:根据实验结果,引导学生推导出圆锥体积的计算公式:V = (1/3) × S × h,其中S为圆锥底面积,h为圆锥高。通过多媒体课件展示公式的推导过程,加深学生的理解。
3、巩固练习
通过例题和练习题,让学生运用公式计算圆锥的体积,解决一些实际问题。注意引导学生分析题目中的条件,确定圆锥的底面积和高,再代入公式进行计算。
4、课堂小结
总结本节课的知识点,强调圆锥体积的计算公式及其推导过程。引导学生回顾实验过程和公式推导,加深对圆锥体积计算方法的理解。
5、作业布置
布置适量的课后作业,包括基础题、提高题和拓展题,以巩固学生对圆锥体积计算方法的掌握和应用能力。
《圆锥的体积》优秀教学设计 4
一、教学内容:
六年制小学数学教材第十二册第25-26页
二、教学目标:
1、知识技能目标:
使学生探索并初步掌握圆锥体积的计算方法和推导过程;使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:
培养学生的合作意识和探究意识;使学生获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
难点:探索圆锥体积方法和推导过程。
四、教学过程:
一、质疑引入
1、圆锥有什么特征?指名学生回答。
2、说一说圆柱体积的计算公式。
(1)已知s、h求v
(2)已知r、h求v
(3)已知d、h求v
3、我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
二、新课
(一)教学圆锥体积的计算公式
1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式——推导圆柱体公式)
2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?
先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
〈1〉学生独立操作
让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?
〈2〉教师教具演示巩固学生的操作效果,cai课件演示
a、屏幕上出示等底、等高
b、等底、不等高
c、等高、不等底
实验报告单
实验器材
实验结果
等底不等高的圆锥、圆柱
等高不等底的圆锥、圆柱
等底等高的圆锥、圆柱
〈3〉引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)
用字母表示圆锥的体积公式.v锥=1/3sh
做一做:
填空:
等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(),圆锥的体积是圆柱的体积的()已知圆锥的体积是9立方分米,圆柱的体积是();如果圆柱的体积是12立方分米,那么圆锥的体积是()。
(二)运用公式,尝试练习
1、要求圆锥的体积,必须知道哪两个条件?为什么要乘1/3?
试一试:
一个圆锥体,底面积是19平方米,高是12分米。这个圆锥的体积是多少?
2、思考:求圆锥的体积,还可能出现那些情况?
(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)
练一练
3、求下面的体积。(只列式不计算)
(1)底面半径是2厘米,高3厘米。
3.14×22×3
(2)底面直径是6分米,高6分米。
3.14×(6÷2)2×6
(3)底面周长是12.56厘米,高是6厘米
3.14×(12.56÷6.28)2×6
2、求下面各圆锥的体积如图(单位厘米)
(1)底面直径是8分米,高9分米(2)底面半径3分米和高7分米
通过公式我们发现计算圆锥的体积所必须的`条件可以是底面积和高
a、底面积和高
b、底面半径和高
c、底面直径和高
d、底面周长和高
三、巩固练习
1、判断:
⑴、圆锥的体积等于圆住体积的1/3。()
⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3()
⑶圆柱的体积比和它等底等高圆锥的体积大2倍。()
⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的
2、填空
⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是18立方米,圆柱的体积是()。
⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是12厘米,圆锥的高是()。
⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是314平方米,圆锥的底面积是()。
3、拓展练习
工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)
(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)
用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。
《圆锥的体积》优秀教学设计 5
【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。
【教法学法】试验探究法小组合作学习法
【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
【教学课时】2课时
【教学流程】
第一课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
【设计意图】以生活中的'数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底等高
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
教学预设:
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用提升技能
1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议
2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议
3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议
【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四第4、7题
2、坐在作业本上作业:练习四第3题
《圆锥的体积》优秀教学设计 6
教学目标:
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)算一算
学生独立计算,集体订正。
说说解题方法
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的.推导方法和公式的应用)
第二课时
教学目标:
1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
3、进一步熟悉圆锥的体积计算
教学难点:
圆锥的体积计算
教学重点:
圆锥的体积计算
教学过程:
一、基本练习
圆锥体积计算公式
相邻两个面积单位之间的进率是多少?
相邻两个体积单位之间的进率是多少?
二、实际应用
占地面积是求得什么?
三、实践活动
《圆锥的体积》优秀教学设计 7
一、教学目标
1、知识与技能:
通过实验和探究,使学生发现圆锥体积与圆柱体积之间的关系。
理解和掌握圆锥体积的计算方法,并能应用公式解决实际问题。
2、过程与方法:
提高学生实践操作、观察比较和抽象概括的能力。
经历圆锥体积公式的推导过程,体验数学知识的广泛应用。
3、情感态度与价值观:
使学生在探究过程中获得成功的`体验,激发学习数学的兴趣。
感受数学与生活的联系,培养学数学、用数学的乐趣。
二、教学重点与难点
教学重点:掌握圆锥体积的计算方法并解决实际问题。
教学难点:探索圆锥体积的计算方法和推导圆锥体积与圆柱体积之间的关系。
三、教学准备
多媒体课件
等底等高、等底不等高、等高不等底的圆锥和圆柱模型
沙子或水等实验材料
实验报告单、直尺、绳子等测量工具
四、教学过程
1、导入新课:通过复习圆柱体积的计算公式,引出圆锥体积的学习。展示圆锥模型,让学生观察并描述圆锥的特征。
2、自主探究:引导学生通过实验操作,探究圆锥体积与圆柱体积之间的关系。让学生分组进行实验,记录实验数据,并归纳出圆锥体积的计算公式。
3、公式推导:通过实验数据,引导学生推导出圆锥体积的计算公式。强调公式的含义和应用范围,并让学生练习使用公式进行计算。
4、巩固练习:设计不同层次的练习题,让学生运用圆锥体积公式解决实际问题。包括已知底面半径和高求体积、已知体积和底面半径求高等问题。
课堂小结:总结本节课的学习内容,强调圆锥体积计算的重要性,并鼓励学生将所学知识应用到实际生活中去。
五、板书设计
课题:《圆锥的体积》
圆锥体积公式:V = (1/3)πrh
教学重点与难点:掌握圆锥体积的计算方法;推导圆锥体积与圆柱体积之间的关系。
《圆锥的体积》优秀教学设计 8
教学目标:
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点:通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)你认为圆锥体积的大小与它的什么有关?
(2)你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的`地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)
师:用字母应该怎样表示?(V=1/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积=圆柱的体积×1/3
圆锥的体积=底面积×高×1/3
用字母表示V=1/3sh
《圆锥的体积》优秀教学设计 9
基本信息
课题圆锥的体积
作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学
教材分析
《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析
六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的.农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标
1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点
重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程
教学环节
教师活动 预设学生行为 设计意图
一、复习准备
1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?
2、圆锥有什么特点?(同时出示幻灯)
3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?
1.长方体、正方体、圆柱。
2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。
3.学生手势出示
4.复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
二、创设情境
出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)
引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。
三、学习新课
1、猜想体积大小
实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。
圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。
2、理解等底等高
我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?
底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础
3、猜想关系、实验验证
同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。
学生汇报
用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。
4、总结公式
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
V锥=V柱×1/3=sh×1/3
“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。
5、全面验证
是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?
(课件演示)等底不等高、等高不等底
为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)
在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。
6、圆锥体积公式的实际应用
(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?
(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)
(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?
(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?
《圆锥的体积》优秀教学设计 10
设计意图:
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:
1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:
使学生初步掌握圆锥体积的计算方法并解决一些实际问题
教学难点:
圆锥体积计算方法和推导过程。
教学过程:
一、复习铺垫:
1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?
二、实验操作:
1、请看接下来的2个实验:
2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。
3、播放视频:
实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?
三、公式推导:
1、通过两次的实验我们可以得出结论:
圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。
3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。
4、在应用圆锥体积公式时不要忘记乘!
四、知识应用
1、接下来我们应用公式解决实际问题。
问题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1.2m。这堆沙子大约有多少立方米?(得数保留两位小数)
2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。
3、列式解答。(分步与综合)
五、知识小结:
今天我们学习了圆锥的体积计算:V= Sh= πr2h。
在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!
六、结束。
【课堂教学设想】
1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。
2、课堂上组织学生分小组实验:
圆柱与圆锥等底不等高时,实验结果会怎样?
圆柱与圆锥等高不等底时,实验结果会怎样?
“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?
圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?
3、课堂检测,促进知识内化。
【教学反思】
本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的'体积,所以设计时力求每个环节都为教学目标服务。
课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。
课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。
《圆锥的体积》优秀教学设计 11
一、教学目标
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点
重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程
(一)创设情境,提出问题
师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?
生:我选择底面最大的;
生:我选择高是最高的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
(二)设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的`体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
1、实验材料,任选沙、米、水中的一种。
2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:
1、谁来汇报一下,你们组是怎样做实验的'?
2、通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)
五、联系生活,拓展运用
本练习共有三个层次:
1、基本练习
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()
一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是()
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()
(2)计算下面圆锥的体积。(单位:厘米)
s=25.12h=2.5
r=4,h=6
2、变形练习
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?v锥=1/3sh
(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?
3、拓展练习
一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
活动五:整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)
《圆锥的体积》优秀教学设计 12
【教学过程】
一、复习
1、圆柱的体积公式是什么?用字母怎样表示?
2、求下列各圆柱的体积。(口答)
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是v=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。
师:可见圆锥的体积等于圆柱体积的`三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
三、巩固练习
(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?
(2)、求圆锥的体积(看图)
(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。
2、填空。
(1)一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米。
(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。
3、选择
(1)两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。
(2)把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。
四、课堂总结
师:今天,我们学习了什么内容?怎样计算圆锥的体积?
对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。
五、布置作业
课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)
《圆锥的体积》优秀教学设计 13
一、教学目标
知识与技能:
使学生理解圆锥体积公式的推导过程。
掌握圆锥体积的计算方法,并能正确应用公式解决实际问题。
过程与方法:
引导学生经历圆锥体积公式的探索过程,培养学生的空间观念和思维能力。
让学生通过实践操作、观察比较、分析综合、得出结论,学会解决问题的方法。
情感态度与价值观:
激发学生学习数学的兴趣,培养学生的科学探究精神。
使学生感受到数学与生活的密切联系,体验到数学的实用价值。
二、教学重难点
重点:圆锥体积公式的推导和应用。
难点:理解圆锥体积公式的.推导过程。
三、教学准备
等底等高的圆柱和圆锥形容器各一个
沙子或水
尺子、计算器
四、教学过程
导入新课
通过回顾圆柱体积的计算方法,引出圆锥体积的学习。
提出问题:如何计算圆锥的体积?它与圆柱的体积有何关系?
新课展开
实验操作:利用等底等高的圆柱和圆锥形容器,以及沙子或水,让学生通过实验探究圆锥与圆柱体积的关系。
学生分组进行实验,并记录实验结果。
引导学生发现圆锥体积与圆柱体积的关系,即圆锥体积是等底等高圆柱体积的1/3。
公式推导
根据实验结果,推导出圆锥体积的公式:V = (1/3)πrh,其中r为底面半径,h为高。
让学生理解并记忆公式,注意公式的适用条件和单位。
实践应用
给出几个实际问题,让学生运用圆锥体积公式进行计算。
通过练习,加深学生对公式的理解和应用。
课堂小结
总结圆锥体积的计算方法和公式推导过程。
强调公式的重要性和实用性,鼓励学生多加练习和应用。
作业布置
安排相关练习题,让学生回家完成,以巩固所学知识。
鼓励学生寻找生活中的圆锥体,尝试计算其体积。
五、教学反思
本节课通过实验操作和公式推导相结合的方式,让学生更加直观地理解了圆锥体积的计算方法。
学生在实验过程中表现出浓厚的兴趣,积极参与,达到了预期的教学效果。
在后续教学中,应继续加强公式的应用和实践,提高学生的计算能力和解决问题的能力。
《圆锥的体积》优秀教学设计 14
一、教学目标
1、知识与技能:
使学生认识圆锥的特征,掌握圆锥体积的计算公式,并能灵活运用公式解决实际问题。
2、过程与方法:
通过实验操作、观察分析,推导圆锥体积的计算公式,培养学生的空间观念和动手操作能力。
3、情感态度与价值观:
激发学生的学习兴趣,调动学生的学习积极性,培养学生的合作精神和创新意识。
二、教学重点与难点
1、教学重点:
掌握圆锥体积的计算公式,并能正确运用。
2、教学难点:
理解圆锥体积公式的推导过程,以及等底等高条件下圆锥体积与圆柱体积的关系。
三、教学准备
多媒体计算机软、硬件一套。
学生实验用圆柱、圆锥容器若干套,水或沙子等实验材料。
幻灯机,圆锥体实物模型。
四、教学过程
1、导入新课
通过回顾已学过的圆柱体积公式,引出新课内容——圆锥的体积。
展示圆锥体实物模型,让学生观察并描述圆锥的特征。
2、新课学习
引导学生通过实验操作,探究圆锥体积的计算公式。
a. 让学生用实验材料(水或沙子)填满圆锥容器,并倒入圆柱容器中,观察并记录实验现象。
b. 通过实验,引导学生发现等底等高的圆锥体积是圆柱体积的1/3。
根据实验结果,推导圆锥体积的.计算公式:V = (1/3)πrh,其中r为圆锥底面半径,h为圆锥高。
3、课堂练习
出示相关练习题,让学生运用圆锥体积公式进行计算,巩固所学知识。
4、课堂小结
总结圆锥体积的计算方法和公式,强调公式的应用条件和注意事项。
引导学生回顾本节课的学习过程,加深对圆锥体积计算公式的理解。
五、板书设计
圆锥的体积
圆锥特征:一个底面、侧面是曲面、一个顶点
圆锥体积公式:V = (1/3)πrh
应用实例及练习题解答过程
六、作业布置
完成相关课后练习题,巩固圆锥体积的计算方法。
鼓励学生寻找生活中的圆锥体实物,测量其底面半径和高,并计算其体积。
《圆锥的体积》优秀教学设计 15
(一)教学目标
使学生理解和掌握圆锥体积的计算公式,并能应用公式解决实际问题。
培养学生的观察、实验、比较、抽象概括的能力,发展空间观念。
激发学生的数学学习兴趣,培养学生的合作意识和探究精神。
(二)教学重难点
重点:掌握圆锥体积的计算公式。
难点:理解等底等高的圆锥体和圆柱体的关系,推导圆锥体积公式。
(三)教学准备
多媒体课件、实验器材(等底等高的圆锥和圆柱容器、沙子或水、量筒等)、实物模型等。
(四)教学过程
导入新课
通过复习圆柱体体积的计算方法,引出圆锥体积的学习。展示圆锥实物模型,让学生观察圆锥的特征,激发学生的学习兴趣。
实验探究
学生分组进行实验,通过等底等高的圆锥和圆柱容器,观察沙子或水的倒入和倒出情况,得出圆锥体积与圆柱体积的关系。引导学生发现等底等高的圆锥体体积是圆柱体体积的1/3。
公式推导
根据实验结果,引导学生推导出圆锥体积的计算公式:V = (1/3) × S × h。通过多媒体课件展示公式的推导过程,帮助学生理解公式的'含义和来源。
巩固练习
通过例题和练习题,让学生运用公式计算圆锥的体积,解决实际问题。注意引导学生分析题目条件,确定圆锥的底面积和高,再代入公式进行计算。
课堂小结
总结本节课的知识点,强调圆锥体积的计算公式及其推导过程。引导学生回顾实验过程和公式推导,加深对圆锥体积计算方法的理解。
教学反思
本节课的教学设计注重学生的实践操作和探究精神的培养,通过实验探究和公式推导,让学生掌握了圆锥体积的计算方法。在教学过程中,我注重引导学生观察、比较、抽象概括,帮助学生建立圆锥体积的表象,加深对公式的理解。同时,我也注重培养学生的合作意识和解决问题的能力,让学生在合作中相互学习、相互帮助。
然而,在教学过程中,我也发现了一些不足之处。首先,在实验探究环节,部分学生的操作不够规范,导致实验结果出现误差。其次,在公式推导环节,部分学生的理解能力较弱,需要进一步加强引导和讲解。针对这些问题,我将在今后的教学中加强实验操作的指导和训练,同时注重学生的个体差异,因材施教,确保每个学生都能掌握圆锥体积的计算方法。
本节课的教学设计取得了一定的成效,但也存在一些需要改进的地方。在今后的教学中,我将继续探索更加有效的教学方法,努力提高教学效果。
【《圆锥的体积》优秀教学设计】相关文章:
圆锥的体积教学设计优秀03-11
《圆锥的体积》教学设计优秀03-13
《圆锥的体积》教学设计07-02
《圆锥的体积》教学设计10-06
圆锥的体积教学设计03-27
《圆锥的体积》教学设计03-07
[优秀]《圆锥的体积》教学设计15篇07-03
圆锥的体积教学设计范文10-06
《圆锥的体积》教学设计模板10-22